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il GUEST EDITORIAL

wide geographic distribution of member na-
tions. It derives its authority from an Inter-
national Council, consisting of the chairmen
of member nation delegations. Business is
conductec on the basis of one vote per mem-
ber nation. Resolutions of the Council are
submitted for approval to the General As-
sembly of a Congress.

The business agenda of the IX Congress
will be announced at least three months in
advance of the Congress and all matters for
consideration on the agenda must reach the
Secretary-Treasurer of INQUA at least six
months in advance, that is, by June 1, 1973.
To be most effective such matters should be
submitted through your National INQUA
Committee. Each member country is entitled
and urged to submit the name of one nomi-
nee for membership in the Executive Com-
mittee, without regard to position, no later
than the first day of the Congress. Names
received are paired on hallots for particular
positions by a Nominating Committee for
vote by the International Council. You have
the right to suggest a nominee to your Na-
tional INQUA Comumittee.

The sixteen Commissions of INQUA,
some of which include several subcommis-
sions, cover a wide range of Quaternary
problems. They have been authorized some-
what haphazardly since 1953. Some are ac-
tive, others less so. A committee has been
appointed to make recommendations for
their restructure and the procedures for their
establishment.

The IX Congress in New Zealand will be
the first held in the southern hemisphere. It
will provide an unusual opportunity to study
similarities and contrasts with environment
in the northern hemisphere, as well as to
learn something of the unique ecological
conditions in New Zealand. Field study ex-
“cursions are designed to demonstrate the
local environmental conditions and their his-
tory during the Quaternary, including the
effects of man-induced and climate-induced
environmental change. Topics for Congress
sessions and symposia have been chosen to
bring together worldwide data and view-
points on problems of current interdiscipli-
nary interest. A first circular has been issued
and a more definitive second one will be
mailed shortly. It can be obtained upon re-
quest to the Secretary-General of the
Congress.

A United States delegation to the Con-
gress will be selected by the U. S. National
Committee for INQUA, N.AS~N.R.C. It
will represent as many INQUA disciplines
as possible. Your nominations of well-
qualified individuals is sought, and should be
sent to the Chairman of the Committee. Par-
tial travel grants will be available both to the
official delegation and to some additional
participants from the United States. Appli-
cation forms may be obtained from the
Chairman of the Committee, which will meet
to consider them early in 1973.
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Dendroclimatology and Dendroecology
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Dendrochronology is the science of dating annual growth layers (rings) in woody
plants. Two related subdisciplines are dendroclimatology and dendroecology. The for-
mer uses the information in dated rings to study problems of present and past climates,
while the latter deals with changes in the local environment rather than regional
climate,

Successful applications of dendroclimatology and dendroecology depend upon careful
stratification. Ring-width samples are selected from trees on limiting sites, where
widths of growth layers vary greatly from one year to the next (sensitivity) and
autocorrelation of the widths is not high., Rings also must be cross-dated and suffi-
ciently replicated to provide precise dating. This selection and dating assures that the
climatic information common to all trees, which is analogous to the “signal,” is large
and properly placed in time. The random error or nouclimatic variations in growth,
among trees, is analogous to “noise” and is reduced when ring-width indices are aver-
aged for many trees.

Some basic facts about the growth are presented along with a discussion of impor-
tant physiological processes operating throughout the roots, stems, and leaves. Certain
gradients associated with tree height, cambial age, and physiological activity control
the size of the growth layers as they vary throughout the tree. These biological
gradients interact with environmental variables and complicate the task of modeling
the relationships linking growth with environment.

Biological models are described for the relationships between variations in ring
widths from conifers on arid sites, and variations in temperature and precpitation.
These climatic factors may influence the tree at any time in the year. Conditions pre-
ceding the growing scason sometimes have a greater influence on ring width than con-
ditions during the growing season, and the relative effects of these factors on growth
vary with latitude, altitude, and differences in factors of the site. The effects of some
climatic factors on growth are negligible during certain times of the vear, but impor-
tant at other times. Climatic factors are sometimes directly related to growth and at
other times are inversely related to growth. Statistical methods are described for
ascertaining these differences in the climatic response of trees irom different sites.

A practical example is given of a tree-ring study and the mechanics are described
for stratification and selection of tree-ring materials, for laboratory preparation, for
cross-dating, and for computer processing. Several methods for calibration of the ring-
width data with climatic variation are described. The most recent is multivariate
analysis, which allows simultaneous calibration of a variety of tree-ring data represent-
ing different sites with a number of variables of climate.

Several examples of applications of tree-ring analysis to problems of environment
and climate are described, One is a specification from tree rings of anomalies in at-
mosphere circulation for a portion of the Northern Hemisphere since 1700 A.D.
Another example treats and specifies past conditions in terms of conditional probabili-
ties. Other methods of comparing present climate with past climate are described

1 Laboratory of Tree-Ring Research, University of Arizona, Tucson, Arizona 85721,
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along with new developments in reconstructing past hydrologic conditions from tree

rings.

Tree-ring studies will be applied in the future to problems of temperate and mesic
environments, and to problems of physiological, genetic, and anatomical variations
within and among trees. New developments in the use of X-ray techniques will facili-
tate the measurement and study of cell size and cell density. Tree rings are an impor-
tant source of information on productivity and dry-matter accumulation at various
sites, Some tree-ring studies will deal with environmental pollution. Statistical develop-
ments will improve estimation of certain past anomalies in weather factors and the
reconstructtion of atmosphere circulation associated with climate variability and
change. Such information should improve chances for measuring and assessing the
possibility of inadvertent modification of climate by man,

INTRODUCTION

The widths of growth rings in woody
plants can serve as natural records of cli-
mate when they vary as a function of some
limiting climatic factor. In arid and semiarid
regions, ring widths have been shown to
rary directly with the intensity and duration
of drought. In cold regions, the rings of
trees- may be natrrow when the temperature
of the growing season is low. Ring widths
from trees in temperate regions often are
not as closely correlated with single cli-
matic conditions as those for trees from arid
or cold regions, but on certain limiting sites
ring widths have been shown to contain
rather significant information on climate.

Features other than the width of the ring
may indicate certain environmental events.
Cells may be damaged and distorted by

frost (Glerum and Farrar, 1966). Cell size,
wall thickness, and the corresponding den-
sity of the woody tissue within the ring also

may be affected by limiting climatic condi-
tions at the time the cells are being formed
(Zahner, 1968; Glerum, 1970; Parker and
Henoch, 1971). The growth rate of trees
may be altered or the growing tissue may be
damaged by fire, avalanche, landslide, ero-
sional events, changes in water table, light-
ning strike, ice damage, an approaching ice
front of a glacier, or insect infestation, Dis-
tortions or changes in ring structure may be
used to date these events which often result
from significant environmental phenomena
or changes.

The general term, dendrochronology, may
be defined as the science of dating the an-
nual growth layers in woody plants and the
exploitation of information they contain on
the environment. The term dendroclima-
tology is restricted to dendrochronological
studies that use climatic information in
dated growth layers to study variability in
present and past climates, while dendroecol-
ogy is a term used for those dendrochron-
ological studies that specifically deal with
problems of present and past local environ-
ments.

Not all woody plants produce ring-width
sequences that are datable and usable for
climatic inference. In some species the rings
are not clearly defined and not easily recog-
nized. Other species may form several
growth lavers per vear. In still other species
the ring widths are little affected by natural
variations in the environment. Some of the
genera that have been used for dendrocli-
matic interpretations are: Araucaria, Arte-
mesia, Fagus, Juniperus, Libocedrus, Abies,
Picea, Pinus, Psendotsuga, Quercus, Se-
quola, Tsuga.

Sticcessiul
ecological information from annual growth

recovery of climatic or

lavers usually involves more than a random
sampling and counting of rings. A dendro-
climatologist or ecologist who is selecting
tree-ring materials in the field must utilize
keen ecological insight and apply the den-
drochronological principles of site selection,
sensitivity, and cross-dating, He should un-
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derstand what climatic information he is
after and have some idea as to the various
wavs tree growth is influenced by the envi-
ronment and how the trees translate climatic
information into the features observable in
the growth ring. For example, if a worker
has éampled trees in which the growth lay-
ers have not been limited by the environ-
mental factor that he wishes to study, no
amount of subsequent statistical manipula-
tion can extract the desired information
from the rings, If a scientist ignores signifi-
cant climatic factors that operate by precon-
ditioning the plant while the growing tissues
are dormant, he is likely to obtain an incom-
plete understanding of the environmental
information contained in tree rings. If a
worker samples trees limited by climate but
does not cross-date the rings, his data may
contain unrecognized missing sets, double
rings, or simple counting errors, so that
some of the growth layers are not assigned
to the year when they were actually formed.
As in other sciences, dendrochronology em-
ploys certain procedures which assure that
results are verifiable.

This article summarizes some basic con-
cepts and principles currently employed in
dendroclimatology and dendroecology and
attempts to illustrate how these concepts
and principles are applied to the reconstruc-
tion of environmental variation that has oc-
curred in the past.

SOME FACTS AND PRINCIPLES
OF TREE GROWTH

Annual rings are growth layers formed
within the xylem, the woody tissue, in stems
and roots. Growth usually starts in conifers
when the buds swell and open in the spring.
The xylem cells are differentiated toward
the inside of the cambiwm, the dividing
laver of cells that lies just inside the bark.
Phloem or food-conducting tissue is differ-
entiated toward the outside of the cambium
(Fig. 1). The first-formed xylem cells in
conifers become large and thin-walled, form-

ing the “earlywood” portion of the annual
growth layer. As successive layers, or
sheaths, of cells are differentiated through-
out the growing season, physiological condi-
tions within the tree gradually change, so
that the resulting xvlem cells are smaller
and have thicker walls than those cells
formed earlier in the season. In the outer
portion of the xylem layer, the cells are
small and the wood is dense enough to ap-
pear darker than the inner portion. The
dense tissue, called “latewood,” forms a dis-
tinct boundary adjacent to the lighter early-
wood of the next-formed xylem layver, The
details of wood structure vary among spe-
cies, but the contrast in structure that oc-
curs between the frst-formed and last-
formed cells of each season is often used to
delineate the boundaries of the annual ring.
The transition in cell size from carlywood
to latewood within any one annual growth
layer is often gradual, but the number and
structure of cells within this transition may
ary from one year to the next, depending
on environmental and physiological factors
that have limited the rate of cell division,
enlargement, and maturation  (Zahner,
1968; Budelsky, 1969). Therefore, hoth the
width of the layer in a radial direction and
its appearance due to the cell structure can
be functions of environmental factors that
exist prior to and during the period of
growth, as well as functions of the heredi-
tary potential of the tree. Until recently,
dendrochronological research has focused al-
most exclusively upon differences in width
of the growth layers because the changes in
cell structure are more difficult to measure
with adequate replication than the width of
the ring. In addition, physiological factors
governing cell size and structural changes
across the growth layer often appear excep-
tionally complex and difficult to interpret in
terms of external environmental factors.
Fach year's xylem laver forms a tissue
that is continuous, or sometimes discontin-
uous, throughout the entire stem and root.
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Fic. 1. A diagrammatic representation of the xylem and phloem layers in a 3-year-old tree. The xylem
layers are differentiated from the inner surface of the cambium which extends from the terminal bud to
the root cap. The boundary between adjacent xylem layers approximates a pair of conical surfaces
with tips marking the positions of the terminal bud and root cap and the bases joined in the oldest
portion of the stem at the soil surface. The phloem layers are differentiated from the outside suriace of
the cambium and are eventually crushed along with the cortex as new tissues are produced from the
underlying cambium. Redrawn from Transeau, Sampson, and Tiffany (1933).

A three dimensional view of the main stem
and root would show the boundaries of the
xylem layers as a series of paired superim-
posed conical surfaces with bases of the
pairs joined at the ground line and tips rep-
resenting the positions of the terminal bud
and root tip at the end of the year when
cach growth layer was formed (Fig. 1).

The dimensions and structure of these
growth layers are a function of the tree’s
heredity and environment acting throughout
the life history of the developing and aging
individual (Kramer and Kozlowski, 1960;
Fritts, 1966). The measurement of any one
dimension, which is commonly the widths of
the rings along a transverse section at the

stem base, represents the product of a vari-
ety of gradients acting through time within
the existing structure of the tree (Duff and
Nolan, 1953; Smith and Wilsie, 1961;
Fritts, Smith, Budelsky, and Cardis, 1965).
For example, the foliage of the crown is the
principal manufacturer of growth regulators
and food, as well as the primary surface
through which water transpires. As new
layers of wood are added above and outside
the existing layers, the tree crown is also
growing and lower branches are dying. As
the tree increases in height with increased
age, the mean crown position gradually
moves upwards along the main stem. Or-
ganic materials must travel a greater dis-
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tance along the stem from the tree crown to
reach a given cambial area near the stem
hase, The water supply to leaves must over-
come increasing hydrostatic forces, Also, in
a theoretical tree that exhibits a constant in-
crement in volume growth, the most re-
cently formed rings in the outer portions of
the stem have a larger circumference and
must be narrower than the inner rings, if a
constant volume increment is maintained.

Tt has been shown (Fritts et al., 1965)
+hat these changes within the tree associated
with age and stem height cause structural
changes to occur from the innermost to out-
ermost rings, especially those in the lower
portions of the main stem. The first few
rings that lie next to the pith (central tis-
sue, Fig. 1) often are narrow, but the encir-
cling rings near the stem center increase in
width. Outside this zone of wide rings, the
rings generally become narrower and are
more likely to vary in width from year to
vear than those in the more youthful por-
tions near the stem center.

On sites that are optimum for tree
growth, rings are generally wider in the
stem segments within the tree crown than at
the stem base (Farrar, 1961). However, in
mature trees on arid sites, a growth layer
may have approximately the same average
width throughout the main stem except in
the uppermost, exposed portions of the tree
where it is often narrower (Fritts et al,
1965). Sometimes the ring widths vary
throughout the stem as a result of changing
climatic conditions (Smith and Wilsie.
1961). Generally, the year-to-year changes
in ring widths at the stem base are greater
and more closely associated with macrocli-
matic variation than the ring-width changes
in the upper regions of the stem which are
niore influenced by the microenvironment of
the individual branches.

Initiation of cambial growth in the stems
of coniferous trees generally occurs first in
the terminal branches and last in the base,
while growth cessation may occur first at
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the base and last in the branches (Larson,
1962). Thus, the growing season may vary
as much as several weeks for different parts
of the tree. As a result of these differences,
changes in climatic factors that influence the
initiation and cessation of cambial activity
may exert a different effect on rings near
the stem base than on those near the stem
tips. Since the cambium in the stem tip is
more likely to be actively dividing at the be-
ginning or end of the growing season, frosts
are more likely to damage cells of the young
tips than those at the stem base, so that
frost rings are most apt to be found in
young stems (LaMarche, 1970).

Similar physiological phenomena can ex-
plain the higher frequency of partial rings
and the low frequency of intra-annual bands
of latewood in the outer portions of the
stem near the base but above the ground
level of the tree bole. During a year that is
unfavorable to growth, the cambial stimulus,
originating at the stem tips, may never
reach the stem base. The ring for that par-
ticular year will be formed only in the
upper, more vigorously growing portions of
the stem so that it is absent at the base. At
the stem base, intra-annual bands of late-
wood, sometimes referred to as false rings,
are more likely to occur in the centrally lo-
cated rings that were nearest the stem tips.
In the upper stem they may occur adjacent
to large branches of the tree crown (Fritts
et al., 1965). The association of intra-annual
bands of latewood with the proximity of the
tree crown is attributed to concentrations of
growth-controlling substances and to availa-
bility of water. These substances are more
likely to vary in the tissues that are near
the stem tips than in tissues that are far re-
moved from the growing crown and near
the roots.

Most dendroclimatological investigations
are more fruitful if changes in ring struc-
ture and size associated with tree age are
assessed and separated from changes associ-
ated with climatic variation. The changes in
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ring width associated with increasing tree water stress during the growing season
age are estimated and removed from the (Zahner, 1968; Budelsky, 1969). by low
ring-width series by a process called stand- temperatures (Hustich, 1948; Dahl and
ardization. This is accomplished by using Mork, 1959; Siren, 1961), or by physiologi-
specific computer programs developed at the  cal conditions which were preconditioned by
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PROVIDE LITTLE OR NO PROVIDE A RECORD OF

RECORD OF VARIATIONS VARIATIONS IN CLIMATE.
IN CLIMATE,

F16, 3. Trees with ample moisture and favorable temperatures are not limited by climatic factors (left).
Their rings are uniformly wide and there is little variation in thickness from one ring to the next. Trees
on arid or extremely cold sites may often be limited by climatic factors (right). Their rings are narrow

and there may be marked variation in ring thickness corresponding to variations in climatic factors which
have limited growth.
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creases with increasing aridity. The correlation of ring widths among and within trees and t 1(,1’1 Acont -
tion with variations in climate increase to (L) and near the extreme for'est t.)order §M) these p;xax?zr(;t
begin to decrease. Relative ring-width variability also increases r%ﬂachmg its maxm.mmb‘neir 11: orest
border (M). Near the forest border the smaller rings may be partlz}l so that they‘ale a se‘n yao g o
radii within the stems and the percentage of rings that are partial within the stem increases ?x}?O{lC;} Ifl’ 32
from K to the arid limit of the forest. Some ring-width series are undatable because there is mb'u }C-l:'n]
variation in width to see any correlation among trees (left of J) or because there are \0 ;mf?y. 1)(11101:
rings (right of M). In such cases, it is impossible to date and reconstruct the annual growth chronology
with any degree of certainty.

chronologies (Fritts, 1969a). Such analyses climatic stress. As mentioned previously,

within trees and is highly related to yearly
variations in the macroclimate (Fig, 4).
The amount of “signal” and “noise” in a
given sample can be assessed by analyses of
variance and other statistical techniques de-
signed for tree-ring studies (Fritts, 1963).
In newly sampled dendroclimatic regions, it

is useful to obtain replicate samples of tree
rings from two or more radii around the
stem from various sites and species and uti-
lize these specially designed statistical tech-
niques to measure the effect of varying site
and species on the amount of “signal” and
“noise” that is found in the ring-width

provide an objective means of evaluating the
quality of the ring-width record and help in
the search for better records and new situa-
tions where environmental information can
be extracted from the rings of trees.

Principle of sensitivity and measurement
of high- and low-frequency wvariability. The
variability in width from one ring to the
next provides one of the best indicators of

this variability arises because, as stress in-
creases from mesic to dry sites, climatic fac-
tors are more often limiting to growth, and
rings will vary in width more from one year
to the next in response to variations in cli-
mate. Such variations in ring width would
not occur if climate did not vary markedly
from year to year. Dendrochronologists
refer to this variability in ring width as
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“sensitivity.” The mean sensitivity for a se-
ries of ring widths is calculated as,
1 a1
n—1 ,;
where & is either the ring width or the
ring-width index for vear 7, and = is the
total number of rings. Thus, mean sensitiv-
ity is a relative measure of first differences
and emphasizes variation in narrow rings
more than variation in wide rings. Since
mean sensitivity measures the ring-width
changes among adjacent rings, it is influ-
enced largely by the short-term changes or
high-frequency variations in climate.

Longer-term changes or low-frequency
variations in the ring-width index can be
measured by correlating indices with prior
indices lagged one or more years. That is,
one obtains the product moment correlations
between v, and i, where 7 varies from 1
to n representing the first to last year in a
ring-width index series, and L is the num-
ber of years by which the series are lagged.
When L. = 1 the correlation is referred to
as the first order autocorrelation; a lagging
of [ = 2 gives the second order autocorre-
lation; in general, when L = n, nth order
autocorrelation coeffieient is obtained. In
contrast to mean sensitivity, autocorrelations
provide measures of the long-term changes
or low-frequency variation in growth. Dif-
ferent species and trees on different and
contrasting sites mayv have varying autocor-
relation structure in their ring-width series.
Differences in autocorrelation structures
may be attributed to differences in foliage
growth and length of foliage retention by
the trees (Eklund, 1956 ; Fritts, 1969a).

The normal statistic referred to as stand-
ard deviation, in contrast to mean sensitivity
and the autocorrelations, measures variabil-
ity in all frequency ranges. Standard devia-
tion and mean sensitivity are not equivalent
measures of variation because standard de-
viation is inflated more than mean sensitiv-
ity whenever long-term variations in growth

o

occur. Dendrochronologists often prefer to
use mean sensitivity rather than standard
deviation because they are concerned mostly
with the high-frequency variance that re-
flects short-term changes in climate. There
is some evidence that the more gradual,
long-term changes in climate are less com-

< monly retained in the ring record of arid-

site trees than in those from cold sites be-
cause the stand density, composition of the
forest, and competition between trees on
arid sites may change with the gradual
changes in moisture available on a site.
Thus, the width of rings from arid-site trees
provides an excellent means of studying
changes in climate with durations of less
than a century, but they are less useful for
assessing long-term climatic changes, which
continue for more than a century. The ring
records from trees at high latitudes or high
altitudes appear to retain both high-fre-
quency and low-frequency variations. Ap-
parently the slowly changing features of the
forest stand do not modify the microenvi-
ronment sufficiently to alter the growth re-
sponse. V. C. LaMarche is attempting to
identify what factors produce the low-fre-
quency variations in ring widths from high
altitude trees.

It is important that dendroclimatologists
search for limiting sites. They often sample
rings of trees and examine samples for sen-
sitivity, Final selection for inclusion in a
dendroclimatic chronology representing an
arid site often is made on the basis of those
tree rings that show the most high-fre-
quency variation in width as measured by
sensitivity and the least low-frequency
change. It has been shown that those trees
with rings exhibiting high-mean sensitivity
indicating high ring-width variability also
show a high ratio of “signal” to “noise” and
are highly correlated with variations in cli-
mate (Fritts et al, 1965) (Fig. 4). Since
ring-width chronologies from arid-site trees
contain less low-irequency information,
marked, low-frequency changes in ring
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width not found in trees from neig'hl?oring
regions are most likely to have '01‘1gm.atefd
trom nonclimatic changes operating within
the site. The dendroclimatologists would at-

terpt to minimize such changes. On the

other hand, anomalous  low-frequency
changes unique to certain trees or sites may
e the information sought by the dendroe-
cologist who is attempting to assess noncli-
matic factors which are operating in a site.

Principle of cross-dating. The principle of
cross-dating is the most unique and impor-
tant principle for tree-ring  analysis. It
srovides a type of “‘experimental” control
:;;z‘; the placement in time of each growth
faver, yet it is sometimes either neglected or
not clearly understood. It requires that the
variation in ring characteristics, especially
ring width, be recognizable and synchron-
ously matched among all samples from a
siven region, so that the year in which each
ring was formed may be correctly ascer-
tained. Cross-dating is possible because,
during years of low growth, the same envi-
ronmental conditions have limited the ring
widths in large numbers of trees. Therefore,
the vear-to-vear fluctuations in limiting en-
vironmental factors that are similar
throughout a region produce synchronous
variations in ring structure.

If a ring is partial so that it is absent on
a portion of a stem, or if an intra-annual
band of latewood is counted as an annual
ring, the variation in ring widths in that
portion of the stem will not coincide with
the variation seen in other portions of the
stem or in other specimens, in which the
corresponding feature is clearly defined.
The ring-width patterns will be out of phase
by one year. Therefore, cross-dating in-
cludes matching of ring-width patterns
among specimens, examing the synchrony,
recognizing any lack of coincidence, infer-
ring where rings may be absent or false,
testing the inference against the ring struc-
ture in other specimens, and finally arriving
at the regional chronology of wide and nar-

row rings based upon the collective se-
quences in all specimens from the region. If
there is little sensitivity and low correlation
of ring-width variation among trees, or if
there are large numbers of partial or intra-
annual bands, the final chronology may be
uncertain and the sample must be consid-
ered undatable and unusable for dendrocli-
matic analysis (Fig. 4).

Foven if partial rings or intra-annual
bands are unlikely, as is often true for trees
growing in temperate or cold regions,
cross-dating should be employed to ensure
that no mistake has been made in the recog-
nition and counting of rings. Also, if cross-
dating is not evident, it is unlikely that the
environment has been sufficiently limiting to
allow a meaningful analysis of climatic fluc-
tuations from the width of rings. Stokes and
Smiley (1968) and Ferguson (1970) pro-
vide excellent illustrations and further dis-
cussion of the cross-dating technique.

Principle of replication. Just as this
principle is a necessary part of many statis-
tical analyses, it is also a part of dendrocli-
matic research. Replication is implied in the
cross-dating procedure. There must be suffi-
cient replication to guarantee accurate
dating. If few rings are absent and confus-
ing intra-annual latewood bands are infre-
quent, accuracy in dating can be assured
with a relatively small number of sampled
trees. On the other hand, if climate has been
less limiting than nonclimatic factors which
vary from tree to tree, and the climatic “sig-
nal” in ring-width patterns is weak, it may
be desirable to sample and analyze the aver-
age growth response of a large number of
trees. By increasing the sample size, the
nonclimatic “noise” is reduced in the aver-
aging process, and the mean growth for
each year approaches the climatic chronol-
ogy for the site. On extremely limiting sites
the expectation of locally absent rings may

be high (Fig. 4). and a large sample may be
required to assure accurate dating, although
the climatic “signal” may not be signifi-
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cantly improved by increasing the sample
size,

The dating and development of a specific
chronolgoy is based first upon internal con-
sistency in the patterns of wide and narrow
rings within the selected sample of trees.
Then the accuracy of this dating is verified

by cross-checking the final chronology with

nearby chronologies derived for independ-
ently dated trees, Literally hundreds of
these independently dated tree-ring chronol-
ogies throughout western North America
consistently show a synchrony with chronol-
ogies in an area within a 300-mile (480
km) radius and in some cases, at distances
up to 1100 miles (1770 km) (Fritts, 1963).
This repetition in nearby chronologies is the
best evidence that cross-dating is real, that
it can be used to precisely identify and re-
construct the annual growth chronology,
and that the results are reasonable estimates
of some component of regional climate.

Modeling the environmental relation. It is
often convenient to construct, a priori, cer-
tain combinations of environmental variables
which are expected to simulate the complex
system that limits growth, For example,
precipitation and temperature may bhe com-
bined statistically to form a single parameter
that represents the actual water budget
which is presumably more closely related to
water stress of the tree than are the indjvid-
ual meteorological factors (Zahner and
Stage, 1966 ; Fritts, Smith, and Strokes,
1965 ; Julian and Fritts, 1968). Tempera-
ture may be summed in a fashion to simu-
late the potential energy available for respi-
ration (Dahl and Mork, 1959). Such a
transformation appears useful in cold re-
gions where the course of cambial activity
may follow a nonlinear function of tempera-
ture during the growing season. However,
most transformations of this kind have not
adequately simulated the factors limiting
growth.

When the relationships between ring
structure and climatic factors are not known

precisely (as is the usual case), a flexible,
rather than a rigid a priori model, using a
number of climatic rariables, is more useful.
For example, Fritts, Smith, and Stokes
(1965) and  Fritts (1969a)  utilized
monthly precipitation, temperature, and eva-
potranspiration deficit, summed or averaged
over a number of intervals corresponding to
the different seasons. A series of multiple
regression analyses were obtained which
statistically predicted ring-width indices.
Multiple regressions using each of the three
types of measurements were applied in a
stepwise fashion, and tests for significance
were used at each step. The three types of
climatic variables were combined and ana-
lyzed with growth, assuming  additivity
among the variables. Lastly, cross products
between variables were included in the
model to allow for interactions among varia-
bles. The gradual increase in complexity of
the variables that were considered allowed
assessment of the relative importance of
each variable at ecach stage of complexity.
The actual models were derived by selecting
those that appear most reasonable physio-
logically, as well as those that provided the
most  significant  regressions.  Sometimes
those regressions with cross products ap-
peared most satisfactory because the Cross
products allowed for variable interaction.
The predictions by the equations accounted
for all but 9-139% of the unexplained vari-
ance in the ring-width chronology, i.e., total
variance less the statistical error (Fritts,
Smith, and Stokes, 1965).

The regression equations were solved by
varying one climatic variable at a time. The
amounts and changes in the calculated
growth associated with specified changes in
cach climatic variable were used to estimate
the relative importance of each climatic fac-
tor on growth.

Stepwise multiple regression has certain
limitations. The technique was developed as
a predictive tool and does not necessarily
express the cause and effect relationships.
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variables entered in step\?'ise successi.on 'UL
sot necessarily ordered in terms ot. thefl‘
fcal importance but rather in terms of thﬁn
apparent relationship as calculated f}lel tle
correlation structure of the dat‘aA .btep\\'lb.e
regression adjusts at each step for intercor-
relations with variables that are alre_:ady gn—
tered into regression. High correlat}on with
a4 variable already in the regression may
prohibit an important variable from being
included in regression until late in the step-
wise sequence. .
Many of these difficulties can be circum-
vented by transforming the environmental
variables to a new set of orthogonal .(uncor—
related) variables. Stepwise regression can
then be applied effectively to these “‘new”
variables because they are statistically indc?—
pendent, ie., uncorrelated, Details on this
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newer approach are described in the section
. e e
on “Tree-Ring Analysis in Practice.

A DENDROCLIMATIC MODEL FOR
CONIFERS ON ARID SITES

Many studies of relationships between
tree-riu/g width and climate have focuse.d
mainly on the limiting effects of the envi-
ronment only during the period of growth
and have failed to consider adequately the
effect of climate during the so-called dor-
mant period including the winter month.s.
Climate was thought to be effective in arid
sites insofar as it might directly limit water
availability and influence either the length of
the growing period or the production and
enlargement of cells (Fig. 5).

However, Douglass (1914), Schulman
(1956), and other workers in semiarid
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North America found that ring widths from
arid-site conifers correlate best with the cli-
mate during the summer, autumn, winter,
and spring that preceded the period of
growth. Some workers suggested that such
correlation could only be the result of water
stored in the ground or by trees (Zahner,
1968). Intensive growth investigations on
arid site trees at Mesa Verde, Colorado
(Fritts, Swith, and Stokes, 1965; Fritts,
1965) as well as more recent studies
(Fritts, 1969a) also indicate that climate
during the growing season has less effect on
ring width than the climate for an extended
period preceding initiation of growth. The
importance of prior climate was brought to
the attention of the author when cambial
growth during the 1962 season at Mesa
Verde continued rather rapidly through
June, July, and early August, a period of
little precipitation and extended drought
(Erdman, Douglas, and Marr, 1969). Cell
division continued even though measurable
shrinkage of stems occurred due to dehydra-
tion of the tree (Fritts, Smith, and Stokes,
19653). The unexpected continuation of
growth during this dry season suggested
that the previous summer, autumn, and win-
ter. which had been moist, both precondi-
tioned the trees and replenished soil mois-
ture, so that an average-sized ring rather
than a narrow ring was formed.

On the basis of these ohservations and the
results from a variety of statistical analyses
of tree-ring and climate relationships, it was
hypothesized that the narrow rings of coni-
fers on arid sites may be attributed largely
to preconditioned internal factors such as
limited reserves of food or growth sub-
stances as well as to depleted soil moisture
(Fig. 6). Low reserves of food in arid-site
conifers may result from reduced rates of
net photosynthesis or high rates of respira-
tion during dry periods of the previous sum-
mer, autumn, winter, and spring (Fig. 6)
(Lritts, Smith, and Stokes, 1965). How-

ever, wide rings result if climatic conditions
during the vear prior to the beginning of
growth have both favored high net photo-
synthesis and replenished soil moisture, and
if there is an abundant supply of stored
food and soil moisture throughout the grow-
ing season (Figs. 5 and 6) (Fritts, 1966).

What is the existing evidence that this
model, which is diagrammed in Fig. 6, is
possible? Krueger and Trappe (1967)
measured food in Douglasfir seedlings and
found an increase in sugars and total re-
serves of food during the winter period.
More recently, Brown (1968) completed a
study with this author on photosynthesis in
southern Arizona Ponderosa pine (Fig. 7).
He established that high rates of photo-
synthesis in an arid-site conifer occurred
during the winter months when leaf tempera-

i

tures during the day were well above freez-
ing. But when soil moisture declined and air
temperatures and solar radiation were rela-
tively high, the daily net photosynthesis was
reduced. These results confirm the possibility
that a significant and important portion of the
food available for growth in stem circumfer-
ence may be made during the previous aut-
umn, winter, and spring, and that dry and
warm conditions during this period can re-
duce the accumulation of food. However, they
do not demonstrate that food per se directly
limits cambial activity. It is possible that
some unrecognized process links variation in
net photosynthesis with subsequent ring-
width growth of arid-site conifers. However,
the best inference at present is that food ac-
cumulated over the prior season by arid-site
conifers can vary markedly from year to
year and can limit the rate of cambial divi-
sion and affect ring width.

There are other ways in which prior cli-
matic conditions can affect the width of the
rings in arid-site trees. Drought conditions
of one year may limit the formation of new
stems, buds, needles, and roots, and these
structures  may  affect  growth-controlling
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so that a narrow ring is formed.

processes in following years (Fig. 6)'. In
certain species and for certain sites, this ef-
fect is sufficiently important to produce per-
sistence in ring width, shown by first order
autocorrelations that frequently range from
0.3-0.5 (Eklund, 1956; Fritts 1965, 1966).
In such cases, extremely wide rings are gen-
erally followed by wider-than-average rings,
and narrow rings by narrower-than-average
rings. Climatic conditions can also affect
flower formation, fertilization, and fruit set.
During years of heavy fruit production, the
reserve food may be depleted and the
growth of the annual ring may be reduced
(Holmsgaard, 1962).

Some lengthy, sensitive, and datable ring-
width chronologies can be obtained from

trees growing on sites where factors other
than drought may sometimes limit growth.
For example, at certain times in the year,
high precipitation and low temperatures
may actually produce conditions that ulti-
mately limit subsequent cambial activity and
ring growth, Some of the relationships thgt
are likely to be involved are diagrammati-
cally shown in Fig. 8 In general, as one
pro:g‘resses from arid to cool sites that oceur
at high latitudes or high altitudes, the condi-
tions shown in Fig. 8 become more impor-
tant for longer intervals of time throughout
the vear while those conditions shown in
hgs 5 and 6 become less important (Ek-
lund, 1956 ; Hustich, 1948).

The relative width of a ring, W;, may be
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C HIGH PRECIPITATION AND LOW TEMPERATURES MAY IN CERTAIN CIRCUMSTANCES LEAD TO LOW GROWTH
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Fra. 8. Physiological Model C illustrating a variety of circumstances in which high precipitation and
low temperatures may lead to reduced ring-width growth., Such climatic factors may become important
on high-altitude or high-latitude sites, on north-facing exposures, or where pockets of cold air accumu-

late during the night.

weights representing the importance of each
model diagram. For coniferous trees on
semiarid and warm sites 8§ > « > « For
deciduous trees on the same types of sites,
or for trees in temperate regions ¢ > f >
k. In cold and moist habitats x > « > S.

expressed mathematically as a function of
climate as shown in models A and B (Figs.
5and 6) and model C (Fig. 8).

Wi = Gilad + BB + «() (2)
where G; is a growth function which varies
inversely with tree age () and «, 8, « are

regimes: the summer and autumn of 1965 were dryer than the summer and autumn of 1966. Photosyn-
thesis, which consumes carbon dioxide, is reduced by dry and warm conditions while respiration, which
releases carbon dioxide, increases. Photosynthesis is also limited by extremely low temperatures that may
occur in midwinter, Since winter temperatures in the arid forest border sites are not extremely low, but
spring, summer, and autumn temperatures are high and drought is frequent, the amount of wood produced
is largely a function of the frequency and duration of mwoist and cool conditions throughout the year
which have favored rapid photosynthesis and accumulation of food (from Brown, 1968).
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THE CONCEPT OF THE
CLIMATIC
“WINDOW” AND RESPONSE
FUNCTION

As indicated by the above discussion, the
ring widths of different species, or for trees
of one species in different sites, are not in-
fluenced by identical sets of environmental
factors or by conditions prevailing during
the same period of the year. Therefore, the
tree may be thought of as a “window” or
flter, which, by means of the physiological
processes, passes and converts a certain cli-
matic or environmental input into a certain
ring-width output, One of the primary tasks
in dendroclimatology is to identify the cli-
matic “window” and response function for
each species and to determine how they may
vary from site to site,

In general, Douglas fir and Ponderosa
pine from arid, forest-border sites in south-
western North America have similar cli-
matic “windows,” which allow a growth re-
sponse to water stress occurring during any
month of the year. Ring-width chronologies
taken primarily from these two species have
been used to analyze and map the Huctua-
tions in moist and dry conditions through-
out western North America for each decade
since A.D. 1500 (Fritts, 1965). The rings
from trees on less arid sites are more de-
pendent upon the moisture falling during
the growing season, and they are less re-
lated to climatic variability than the rings
from trees on the arid sites (Fig. 9). Thus,
trees on diverse sites may be limited by dif-
ferent sets of climatic factors and exhibit
different climatic “windows.”

Recent studies utilizing principal compo-
nent analysis along with multiple regression
have revealed not only differences in the cli-
matic “‘windows” of the same species on
contrasting sites and geographic locations,
but, in some cases, the same environmental
factor may influence different trees in differ-
ent ways so that they exhibit different re-

sponses to the same environmental factors,
It the climatic “‘windows” and response
functions for two stands on contrasting sites
or for different species on the same site can
be adequately defined, and if the responses
differ by only one factor, it may be possible

«to use the differences between the respective

ring-width chronologies to estimate varia-
tions in the differing factor (Fritts, Blasing,
Hayden, and Kutzbach, 1971 ).

TREE-RING ANALYSIS IN
PRACTICE

Let us assume, for the purpose of illustra-
tion, that a climatologist is working in an
area for which there exists only a 20 or 30-
year climatic record and a hydrologist is
working with an even shorter stream-flow
record. Both scientists may be interested in
the question as to whether the mean and the
variance for the period of their short record
are good estimates of the long-term mean
and variance, i.e., whether they closely ap-
proximate the mean and variance for the pe-
riod spanned by some longer record of cli-
mate, such as that obtained from the rings
of 200-300-year old trees. They may wish
to test whether it was either wetter of drier
in the recent past, or may wish to study the
time structure of their records in terms of
recurrence of extremes such as prolonged
droughts. How could they proceed in such
an analysis using tree rings?

Collecting data is accomplished by select-
ing relatively undisturbed and open forests
where the climatic factor of interest (in this
case, drought) is most limiting to tree
growth. The trees would consist of the
“sensitive” type and would be located at the
lower elevational or drier limits for each
particular species. Within these restrictions
of site, they could select groups of trees or
individuals most representative of their
study area or climatic region.

Actual field collections are then obtained,
using a special tool called an increment
corer. This tool extracts a cylinder of wood
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4 mm in diameter from the stem. It is gen-
erally more expedient to locate the best sites
by first coring a few trees and examining
their rings to check the variability of width
and the cross-dating. If the rings are gener-
ally wide with little variation from year to
year, then the researchers would conclude
that climatic factors have not been very lim-
iting to tree-ring growth in the site. They
should move to drier, more exposed or
rockier sites. They need not be overly con-
cerned about the precise location as trees
may be sampled at distances of 32 km (20
or ;nore miles) from a weather station with-
out markedly reducing the correlation be-
tween ring width and climate at the record-

ing station (Julian and Fritts, 1968). If the
second choice of sites is too extreme, the
workers will find that the samples exhibit
many partial rings so that accurate cross-
dating is questionable. They would then
move to slightly less extreme sites. Once the
general ecological niche for good cross-dat-
ing and high “sensitivity” is located, they
sample at least two radii from 20 to 30 trees
in a given location. The replication of at
least two sampled radii per tree allows anal-
ysis of the variations within trees as well as
among trees (Fritts, 1963). Additional rep-
lication of three or more radii is useful for
dating and provides a wider selection of ma-
terials, but processing and analysis of more
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than two cores per tree is usually unneces-
sary at least for arid-site trees unless one is
interested in evaluating the chronologies of
specific trees (Fritts, 1969a). After return-
ing to the laboratory, the scientists will ex-
amine their cores, cross-date them, and select
approximately ten trees with the longest,
most sensitive, and most complete ring-width
records, as shown by the two most complete
radii sampled from each tree. If the rings do
not vary greatly in width or if correlation
between trees is poor, replicated samples
from 20 or more trees may be used to help
minimize the nonclimatic “noise” and reduce
the standard error.

Dating and screening of the specimens
proceed after the cores are dried and prop-
erly mounted. Dating is accomplished by eye
or by graphical techniques (Stokes and
Smiley, 1968; Ferguson, 1970). Tt should
be emphasized that dating #ust be accom-
plished to assure the recognition of the an-
nual growth layers so that there is precise
time control. The dendrolclimatologist st
be certain that the year in which each ring
was formed is properly identified before he
attempts to reconstruct variation in past cli-
mate.

As each core is dated, the specimen is
marked. At the Laboratory of Tree-Ring
Research, a coding system is used in which
the first ring beginning with each decade is
marked with a needle prick, along with dii-
ficult areas where rings may be partial, ab-
sent, or hard to see (Stokes and Smiley,
1968).

The most sensitive and oldest trees are
then selected, the width of each ring is
measured, and the values are coded on IBM
cards or written on magnetic computer tape.
The entire set of data is first computer-
processed through a preliminary clean-up
routine. This preliminary processing serves
to check for coding errors, includes calcula-
tions of ring-width variability, and involves
construction of plots of 20-year average ring
widths to assist in spotting and eliminating

inconsistent data and in choosing the appro-
priate growth curve to be fitted to the data.
After the computer output has been checked
and the errors corrected, the data are resub-
mitted for final analysis.

Analysis may proceed in four basic

. phases:

1. An exponential growth function or a
straight line is fitted to each measured radius
by means of a Jeast-squares curve-fitting tech-
nique (See Fig. 2.) (Fritts, Mosimann, and
Bottorff, 1969), and ring-width values are
converted to ring-width indices. These indi-
ces, unlike ring widths, generally range
from a value of 0-2 and have an expected
mean of one and a variance that is homoge-
neous through time (Fig. 2) (Matalas,
1962). The indices from all rings formed in
each year are averaged to obtain a mean
ring-width chronology for trees, subgroups,
and groups (Fig. 2), depending on the sam-
pling design.

Jonsson (1969), in Sweden, converts ring
widths to natural logarithms, averages these
data for all trees in a group, and fits a poly-
nomial to the mean of the logarithmic series
while simultaneously taking into account the
effects of climate, The mean index value for
each year is then calculated by subtracting
the value of the ftted polynomial curve,
subtracting the standard deviation, and tak-
ing the exponent. His ring-width indices are
similar to those obtained in North American
studies, but they differ in that his indices in-
clude variances arising from differences in
individual growth curves among replications
and among trees. Also, the polynomial curve
could remove significant long-term climatic
information if the climatic input was not

known. His method is well suited for forest
vield studies, where the climate is known,
but would have limited application to stud-
ies of past climatic change. Nevertheless,
such an approach has merit in studies where
a function other than the exponent must be
fitted to obtain ring-width indices. Some-
times moving averages have been used as

‘ Jong-te

- ties.

rowth functions but these data_ remove all
- +m climatic change and in some ap-
plications introduce oscillations 1.nto the se-
In studies of arctic trees, little change
occurs as a function of tree age. ‘In such,
cases, it may be appropriate to divide each
o th by the mean ring width for some

ring \\'id
time common to all trees (Ramp-

interval of
ton, 1971). o

5 Measures of statistical characteristics for

thcj 'indices of each series are .mgde. They
include the mean, standard deviation, mean
sensitivity, and at least the first-order auto-
correlation. In all series of two or'm.ore
radii, the standard error, standard deviation,
and variance for each year of the chronAol—
ogy are obtained. Finally, if a correlatlop
study and analysis of variance are appropri-
ate, the necessary computations are made
( Fritts, 1963).
" 3. The defining of the climatic “window”
and response function, that is, the ca'lib.ra-
tion of the ring-width series with existing
weather or hydrologic data, may proceed‘m
o fashion appropriate to the particu'lar in-
yestigation. As stated earlier, a mult}ple re-
gression analysis has been employed in sc?me
studies to predict the yearly growth indices
as a function of the meteorologic variables
(Fritts, 1962a,b; Serre, Liick, and Pons,
1@)64; Schulman and Bryson, 1964; Hus-
tich, 1948 ; Julian and Fritts, 1968).

A more efficient technique involving ex-
traction of eigenvectors from monthly tem-
perature and precipitation values has proven
highly successful (Fritts et .al., 197.1). The
eigenvectors are designated in matrix 11qta—
tion as wI,, where the subscripts preceeding
and following the matrix symbol indicate re-
spectively the number of rows and columns
in the matrix. They are often referred to as
principal components and represent uncorre-
lated modes or patterns of behavior of the
original data assemblage, wEn The sub-
script s is the number of variables, such as
temperature and  precipitation for' the
months prior to and including the period of
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growth, as shown in Fig. 9, n is the number
of observations (years), and p is the num-
ber of important eigenvectors where p<(i.
A new set of uncorrelated variables or mul-
tiplyers of the eigenvectors called ampli-
tudes, X, can be created by multiplying the
eigenvectors and the original data,

an = pE/m]"n (3)

where the prime denotes the transpose of a
matrix, and # and p are the same as above
(see Fritts et al., 1971). .

It is customary to discard those eigen-
vectors and their amplitudes that explain
a very small percentage of the original data
and use only the p-eigenvectors and ampli-
tudes that represent the most important
components of the data. Thus, principal
component analysis is used to reduce the
number of variables and to transform the
data into orthogonal (uncorrelated) varia-
bles. Because they are orthogonal, stepwise
multiple regression (Fritts, 1962a) is an
efficient estimator of the tree-growth and
climate relationship. The ring-width indices,
Pa., are estimated from the multiplyers of
the eigenvectors in the following manner,

P = 1RX. (4)

where P, is a row vector of estimates of
ring-width indices, ;R, is a row vector oi
significant multiple regression coefficients
(all insignificant ones are assigned a value
of zero). Substituting ,EnF. in Eq. 3 for
WXy in Eq. 4 we obtain
A [ - - -
l-l)n = 1]€p[3/rzzﬁrr, (3)
Thus, the original climatic data can be
transformed into estimates of tree-ring
width via regressions on the multiplyers of
eigenvectors. This transform is a transfer or
response function

1 Ty = -'1 pr:,m (6)

The response function is a row vector with
elements that represent the magnitude of
growth response to each climatic variable
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(Fig. 10). The same eigenvectors may be
used to derive response functions for several
tree-ring chronologies in a given region, be-
cause only the regression coefficients vary.

It may be desirable to take into account
the lag in response or autocorrelation by in-
cluding in the regression analysis ring-width
indices for prior years (Fritts, 1962a) (Fig.
10). This removes the correlation of the re-
siduals arising from autocorrelation and al-
lows a more precise determination of
climatic or hydrologic parameters (Julian

and Fritts, 1968). Certain species such as
Pseudotsuga menszesii and Pinus aristata are
favored for dendroclimatic research because
there is low autocorrelation in the ring-
width chronolgy and climatic information
for each year is largely confined to a single
‘qring. When autocorrelation is high, climatic
“information for a given year must be ob-
tained from a number of consecutive rings.

Another approach, suggested by Stockton
and Fritts (1968), involves the joint occur-
rence of climatic classes and tree-ring indi-

o TIASONDUEMAMYY JYASONDYEMANYY |23
L T T T T T H
.6+ QUARTZ -
.+ MOUNTAIN
4+ PP L I L
2 11 : | }
SRS Nl - U/\L Lol
o of AL ATTENAG D N A
- : \V i
8\2,,1 }.l 1 1 i 3 l lN ! l -q F
ol I 1 lPrior
zﬁ4» - Growth
G Temperature Precipitation LT
Q T LAKEVIEW 3 I
'Li‘-’ .4:pp - o
5 25 T : TT ]
0 I T /{\ rLTEN I I
a 0r =L LI g 4 L __M/I\ N I
z A AETYHE v T\T/ . YTl
Z I \A IO 1 3
=2t 1 [
Lo I A ]
: -
4L whire i : i
[ MOUNTAIN I I '
2_Bi>ﬂ\7 J/1\]\ T i
LT ] I
or &Y | ro1- g iNTTT&I"
] v \J L
ol A Tl I T T #) T INg :i l l l 1Y L
L Lt i 'L 1 1 l -LJ b i i Jl‘ Lo i i i 1 1 i i i i i 3 3 )
%EﬁRspzlgRodFygégdd JJUASONDJFMAMJIY | 23
A F YEAR PRIOR Y
TO GROWTH GROWTH TO GROWTH G%gf\;/"foffi:
MONTH MONTH LAG

Fre. IQ, Three diverse response functions T (not scaled by standard deviations as in Fig. 9) for three
st.ands of semiarid site trees: Ponderosa pine at Quartz Mountain in northern Washington, Ponderosa
pine at Lgkeview, Oregon, and Bristlecone pine in the White Mountains, east-central galiférnia Tem-~
{)crat}xre is frequently inversely related to growth at low latitudes (ie, the elements of the réspﬁnse
mxTctxon have negative signs), but temperature is directly related to growth at high latitudes ox: high
aItltpdes, especially during the winter season. Precipitation is generally directly related to growth e‘cc:pt
a.t hlgh fatitudes or altitudes in midwinter, in April, and late in the growing season, when I?igh precipita-
tlc.m is associated with conditions detrimental to growth. Prior growth up to lags of]3 years are correlated
with current growth of the Quartz Mountain Ponderosa pine but prior growth is not Ztorrelated with cur-

rent growth of the White Mountain Bristlecone pine.
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ces converted to standard normal fOI’Il’i. The
probabilities of each climatic clzfss, given a
épcciﬁc tree-ring class, are obtmn?d by the
joint occurrences during the period when
data for both climate and tree rings exist.
These probabilities are applied to making
statements about the climate during years
for which only the tree-ring record exists.

4. Further analysis may be undertaken
after the tree-ring data are evaluated and
¢the climatic relationships assessed. In the
past, it has been a common practice to select
a group of chronologies over a wide geo-
graphic area which have a similar climatic
response. It is then permissible to normalize
each annual growth index by subtracting the
mean and dividing by the standard deviation
for a given period. These normalized values
may be averaged for pentads or decades,
plotted on maps and contoured to show
anomalous variation in past growth (Fig.
11) (Fritts, 1965). If the chronologies have
been calibrated with climate, it is then possi-
ble to infer what climatic variations have oc-
curred by observing the areas and periods
of high and low tree growth (Fritts, 1965).

Multivariate techniques have been used
that involve eigenvector and canonical
correlation analyses to reconstruct regional
and hemispheric variation in past climate. For
example, a current study by the author and
others (Fritts et al., 1971) involves a can-
onical correlation and regression of pressure
anomalies during 1900-1962 for half of the
Northern Hemisphere extending eastward
from 165° east longitude to 5° west longi-
tude and lying between 65° and 25° north
latitude as compared to 49 tree-ring chron-
ologies from western North America. Maps
of past atmospheric circulation are recon-
structed for the period when there is a
tree-ring record, but no climatic record ex-
ists (Fig. 12). This new development pro-
vides a potential tool for deriving a series of
transfer functions which can be used to re-

construct directly from tree rings the
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anomalous patterns of global atmospheric
circulation (pressure anomalies). Maps of
these anomalies (Fig. 12) may be used in
studying past climatic change. Multivariate
methods have the added advantage in that
they can assess and utilize tree-ring chronol-
ogies of diverse climatic responses. Other
dendroclimatic evaluation and calibration
studies employ power and cross-power spec-
tral analyses, digital filters, and a variety of
other statistical techniques (See Jenkins and
Watts, 1968; Mitchell, Dzerdzeevskii,
Flohn, Hofmeyer, Lamb, Rao, and Wallen,
1966.).

Stockton (1971) has extended stream-
flow records backwards in time by using
tree rings. Separate veplicated tree-ring
samples were obtained from trees on widely
scattered sites throughout two watersheds.
These were calibrated with stream-flow and
precipitation over the watersheds. Multivar-
iate relationships of both spatial and tem-
poral variation of ring widths are obtained
which allow reconstruction of the runoff re-
cord from the tree-ring records of the sam-
pled sites for years where ring-width meas-
urements are available but no hydrologic
records exist.

Stockton and Fritts (1971) used similar
techniques to extend back to 1810 the water
level record for Lake Athabasca, Canada.
The water levels in channels, sloughs, and
minor depressions within the Peace-Atha-
basca delta are directly related to the water
level of the lake. The ring widths of White
Spruce, Picea glauce, growing along the wa-
terways were calibrated with water levels of
Lake Athabasca for three periods during
each year, using a 33-year record. The cali-
brations were utilized to reconstruct the
water levels prior to 1935. The variations in
water levels, especially those early in the
season, were found to be considerably
higher in the reconstructed record than in
the 33-year calibration period. If the long-
term variance had been estimated from the
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Fic. 1?. Selected maps for western North America showing large-scale anomalies in tree growth for
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cool anomalies in climate while negative departures of low growth (L) indicate dry and warm anomalies

short, 33-year period, the variance of the
early spring lake levels would have been
only one-third the variance estimated from
the reconstructed data for the period
1810-1967.

LaMarche and Fritts (in press) utilized
several statistical techniques to examine
tree-ring data for possible relationships with
solar variation represented by sunspot num-
bers. They were unable to establish that any
significant relationship existed and con-

cluded that a further search for empirical
associations between tree-ring indices and
the record of sunspot numbers is likely to
prove unrewarding. However, they noted
significant periodicities in many tree-ring
records at frequencies of approximately two
vears, and 22 through 29 years.

It is also possible to statistically anlyze
for significant departures in tree-ring data
(Julian and Fritts, 1968) or to map mean
growth departures for a particular subperiod
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for the period common to all tree-growth chronologies, 1651-1920 (Fritts, 1965).

as compared to longer-term period for
which the tree-ring chronology is available
(Fig. 13). If the climate that has limited
growth has been anomalous for the sub-
period, then the mean anomaly in tree rings
will reflect the anomalous variation in cli-
mate (Fritts, 1969h) (Fig. 13).

LaMarche and Fritts (1971) compared
eigenvectors of 49 North American tree-
ring chronologies for 1931-1962 with eigen-
vectors of precipitation (Sellers, 1968).
They also compared the tree-ring eigenvec-
tors for 1931-1962 with eigenvectors de-

rived from the same chronologies for
1700-1930. They found that the tree-ring
eigenvectors resembled the precipitation
eigenvectors and that the three most impor-
tant eigenvectors of tree growth were simi-
lar for the two periods. However, the fourth
eigenvector differed between the two sets of
tree-ring data. They concluded that the pre-
cipitation anomaly patterns which had domi-
nated during 1931-1966 were reflected in
tree-ring data and the first three patterns
seem to have persisted for at least 260
years, and are thus likely to maintain their
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Fic. 12, Anomalous pressure variation during winter that persisted from 1816-18453 A.D. as recon-
structed (predicted) from anomalous variations in the widths of tree rings (units are calculated as milli-
bar departures from the mean pressure for 1899-1939, 1945-1962 and averaged by pentads). Square dots
mark those departures that are twice the residual standard error. The period from 1816-1830 is charac-
terized by a weakening of the Aleutian low (higher than normal pressure) and a weakening of the high
over the subtropical Pacific, 25° N latitude. There is a strengthening of lows over Newifoundland and
Hudson’s Bay in 1826-1830 and again in 1836-1840. The anomalies are less marked in 1816-1820, 1831-
18335, and 1841-18345,

importance during, at least, the immediate
future.

Robinson and Dean (1969) utilized ar-
chaeological tree-ring chronologies to map
and study the decade changes in climates in
northern Arizona and New Mexico and
southern Utah and Colorado during prehis-
toric times. Others such as Eklund (1956),
Hustich (1949), Siren (1961), Schulman
(1956), Douglass (1914), Weakly (1950),
and Giddings (1941), to mention only a
few, have utilized standardized tree-ring re-
cords from which they inferred the climatic
conditions that have occurred in the past.
LaMarche and Mooney (1967) use tree-
ring dates from dead standing trees and

remnants above the present timberline to es-
tablish and date the presence of an elevated
altithermal timberline.

THE PROMISE AND POSSIBLE
FUTURE OF TREE-RING
ANALYSIS

There is little doubt that in arid and cold
environments, tree-ring analysis will become
an increasingly important tool for climatic
and ecologic research. Data aquisition has
been greatly facilitated by the computer so
that chronologies can be developed more
objectively and efficiently. Many new chron-
ologies have become available recently, and
old chronologies have been extended further
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Fi6. 13, Analysis of tree rings can detect potential anomalies in climatic data. The means and standard
deviations of 38 tree-ring chronologies for 1901-1960 A.D. are divided by the means and standard devi-
ions for the longer period 1631-1962 A.D. Contours show the areas of major departure in percentage
of mean and variance for the subperiod, during 1901-1960 A.D, The mean growth, and by inference the
moisture supply, has been anomalously high in the entire Southwest, along the western slope of the cen-
tral Rocky Mountains, and in the Pacific Northwest during the recent normal period. The standard devia-

tion has been high in the Northwest and locally in southeastern Colorado (Fritts, 1969b).

into the past. The scientific basis of the dis-
cipline is now accepted.

Trees from sites in temperate environ-
ments will undoubtedly receive more atten-
tion as populations increase and greater
dlemands are made upon our natural re-
sources. The rings from trees on the most
arid and cool sites in temperate regions will
vield some information on moisture and
temperature at certain times within the
vear. However, few virgin forests are left,

and the trees that are now available will be
relatively young and growing in dense forest
stands with a complicated history of use.
Nonclimatic factors may have heen limiting
to growth for long periods so that the po-
tential information on climate contained in
the rings will be subject to large amounts of
statistical “noise.” However, with careful
stratification, replication, and cross-dating of
sampled material and the proper use of
objective computer processing and analysis,
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a significant climatic “signal” may be ex-
tractable, even from data containing a large
amount of nonclimatic “noise.”

On the other hand, some ecological stud-
ies dealing with past history of the environ-
ment may find useful information in what
the dendroclimatologist may regard as
“hoise.” The statistical characteristics of
tree rings can be applied to nonclimatic
analyses of physiological gradients within
trees, to the ecological differences among
sites (Duff and Nolan, 1953 Fritts, et al,
1965 Fritts, 196%9), and to phenological
differences between apparently genetically
different populations of trees (IF ritts, 1963).

The structure of the cells throughout the
ring may contain a number of features that
may be related to climatic  conditions
(Serre, Liick, and Pons, 1964). Recent ad-
vances in X-ray techniques and wood-den-
sity studies (Polge, 1970; Parker and Me-
leskie, 1970; Jones and Parker, 1970)
already point to radically new ways of
quantifying such features. As these tech-
niques are developed, they should make pos-
sible the rapid and objective measurement
of ring structures which can be calibrated
with appropriate environmental variables
(Parker and Henoch, 1971). Such data on
wood density appear to be independent of
ring-width variation in at least some in-
stances and should provide significant infor-
mation on the variability of past environ-
ments. It appears that wood-density data
from trees of temperate regions may contain
more information on past climate than the
measurements of ring widths (Parker and
Henoch, 1971).

Dendroclimatic analysis continues to have
considerable potential in such diverse fields
as archaeology, forestry, geology, history,
and hydrology, as well as in biology and cli-
matology. Analysis of ring-width changes in
semiarid environments will remain especially
relevant to problems in water-resource de-
velopment, while studies of ring-width
changes in polar regions will be increasingly

applied to problems of forestry and agricul-
ture in environments where low tempera-
ture is limiting (Eklund, 1956; Hustich,
1949).

For example, scientists will turn more
frequently to tree-ring data for angmenting
and correcting anomalies in short climatic
and hydrologic records (Gatewood, Wilson,
Thomas, and Kister, 1964 ; Julian and
Fritts, 1968; Schulman, 1945, 1947 ; Stock-
ton, 1971; Stockton and Fritts, 1971).
Studies of productivity in the natural comi-
munities of arid lands and cold regions
should include dendroclimatic analysis. Lsti-
mates of dry-matter production for highly
variable and marginal environments made
over relatively short time periods ought to
be compared with and adjusted for the
long-term variances and means of past pro-
ductivity and reproduction. Since productiv-
ity estimates are bases upon some measure
of volume growth which is related to ring
widths, the use of tree-ring analysis to cor-
cect for anomalies in measured productivity
would be an especially suitable tool.

Many exciting possibilities exist for den-
droclimatic applications to the assessment
and analysis of past climatic anomalies and
atmospheric circulation controlling climate.
Progress has been reported in developing
ways to relate tree-ring variance directly to
meteorologic factors such as precipitation,
temperature, pressure, indices of circulation,
and frequencies of circulation types. There
are also other types of proxy series of cli-
mate besides tree rings (Kutzbach, in prep-
aration). As these data become sufficiently
well-dated to be used along with tree rings,
they can be entered into a multivariate anal-
ysis with tree-ring data and should improve
the estimates of past climate.

As more research focuses on man’s altera-
tion of the environment, there will be an in-
creasing need to rely on tree rings to recon-
struct conditions prior to alteration and to
man-induced

assess the magnitude of

changes. For example, tree rings are being

used in an assessment of weather modifica-
tion and as a measurement of the degree of
air pollution. Dated tree-ring samples from
4 ireated forest-stand can he compared to a
control-stand to test whether there has been
any significant changes in tree growth, and,
by inference, any significant effect due to
the altered environment (Polge, 1970; Vins
and Tesat, 1969).

As  dendroclimatic techniques are ex-
tended to new species and new regions of
the world, and some of the newer tech-
niques become more widely used, tree-ring
studies will be increasingly employed as a
climatological and ecological tool. At pres-
ent, they provide the most precise estimates
of vear-by-year environmental changes oc-
curring prior to man’s measurement of cli-
mate.
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