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ABSTRACT: Predicting population-level effects of landscape change
depends on identifying factors that influence population connectivity
in complex landscapes. However, most putative movement corridors
and barriers have not been based on empirical data. In this study,
we identify factors that influence connectivity by comparing patterns
of genetic similarity among 146 black bears (Ursus americanus), sam-
pled across a 3,000-km* study area in northern Idaho, with 110
landscape-resistance hypotheses. Genetic similarities were based on
the pairwise percentage dissimilarity among all individuals based on
nine microsatellite loci (average expected heterozygosity = 0.79).
Landscape-resistance hypotheses describe a range of potential rela-
tionships between movement cost and land cover, slope, elevation,
roads, Euclidean distance, and a putative movement barrier. These
hypotheses were divided into seven organizational models in which
the influences of barriers, distance, and landscape features were sta-
tistically separated using partial Mantel tests. Only one of the com-
peting organizational models was fully supported: patterns of genetic
structure are primarily related to landscape gradients of land cover
and elevation. The alternative landscape models, isolation by barriers
and isolation by distance, are not supported. In this black bear pop-
ulation, gene flow is facilitated by contiguous forest cover at middle
elevations.

Keywords: connectivity, landscape resistance, least-cost paths, micro-
satellite, population genetics, Ursus americanus.

Habitat fragmentation has been shown to decrease dis-
persal (Gibbs 1998; deMaynadier and Hunter 2000), in-
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crease mortality (Fahrig et al. 1995; Carr and Fahrig 2001),
and reduce genetic diversity (Saccheri et al. 2001; Frank-
ham et al. 2002; Vila et al. 2002), thereby increasing ex-
tinction risk (Lande 1988; Tallmon et al. 2004). Despite
the clear importance of habitat connectivity for population
persistence, specific factors mediating connectivity are
largely unknown for most species (With et al. 1997; Bowne
and Bowers 2004; Cushman 2006). Landscapes are per-
ceived by particular species in ways that may not corre-
spond to our assumptions concerning connectivity and
habitat quality (With et al. 1997; Wiens 2001). Many stud-
ies have represented the landscape as a binary mosaic of
suitable and unsuitable habitat (e.g., Danielson and Hub-
bard 2000; Coulon et al. 2004); however, it is more likely
that organisms experience landscapes as gradients of vary-
ing quality and resistance to movement rather than as
mosaics of uniformly good habitat in a uniformly inhos-
pitable matrix (McIntyre and Barrett 1992; Manning et al.
2004; McGarigal and Cushman 2005).

Traditional approaches for measuring species-specific
dispersal are logistically complicated. Even the largest stud-
ies using the latest Global Positioning System collars can
track only relatively few individuals over time (e.g., <30;
Gaines et al. 2005). Measuring dispersal using these meth-
ods is further complicated by confounding dispersal events
with exploratory movements, where an animal moves a
large distance only to return to its original territory with-
out breeding. Alternatively, genetic approaches can be used
to estimate dispersal and immigration (Waples 1998;
Schwartz et al. 2002). Logistical and financial costs asso-
ciated with tracking individual animals are obviated and,
because genetic data integrate time, slow rates of dispersal
are measurable. Furthermore, genetic metrics integrate
only those movements that produce meaningful popula-
tion effects—dispersals that result in breeding or emi-
gration.

Most population genetic studies have used models that
consider populations to be mutually isolated and internally
panmictic. The most common approaches involve F sta-
tistics or assignment tests to assess genetic differences
among well-defined subpopulations (Wright 1943; Mills
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and Allendorf 1996; Wasser and Strobeck 1998). Recently,
models such as STRUCTURE (Pritchard et al. 2000;
Evanno et al. 2005) that cluster individuals by minimizing
Hardy-Weinberg and gametic disequilibrium have been
used to define the subpopulations. Once discrete subpop-
ulations have been identified, post hoc analyses are per-
formed, correlating observed genetic patterns with inter-
population distance or putative movement barriers (e.g.,
Proctor et al. 2005). Populations, however, often have sub-
stantial internal structure (Wright 1943; Gompper et al.
1998; Van Horn et al. 2004), and, except in special cases
like oceanic islands or mountain lakes, it is often difficult
to rigorously define discrete boundaries between popu-
lations. In terrestrial landscapes, it is more common to
have species that are either continuously distributed or
patchily distributed with low densities between popula-
tions (Manel et al. 2003). Thus, in many situations, pop-
ulation structure is better defined as a gradient phenom-
enon than as a categorical, patch-based entity. In
recognition of this, researchers have recently begun to
adopt “landscape genetic” approaches, where individuals
are sampled across broad landscapes, genetic relatedness
between individuals assessed, and these relationships cor-
related with landscape features (Vitalis and Couvet 2001;
Manel et al. 2003; Coulon et al. 2004, 2006; Scribner et
al. 2005).

Patterns of genetic relatedness among individuals can
be correlated with landscape features by building resistance
surfaces that assign different resistance-to-movement val-
ues to different landscape features. A matrix of movement
costs can then be computed, based on the least-cost paths
between all pairs of individuals. By comparing genetic dif-
ferentiation among individuals with cost distances between
them, researchers can test specific hypotheses about the
influences of landscape features and environmental con-
ditions on gene flow (Vos et al. 2001; Coulon et al. 2004,
2006; Spear et al. 2005).

This study extends existing landscape genetic methods
(Manel et al. 2003) by using a factorial, multimodel ap-
proach to evaluate alternative hypotheses and identify the
combination of environmental factors that appear to drive
gene flow in this landscape. We used noninvasive genetic
sampling (Taberlet et al. 1997; Kohn et al. 1999), least-
cost path modeling, and partial Mantel tests to test 110
hypotheses describing alternative relationships between
landscape factors and gene flow in an American black bear
(Ursus americanus) population in Idaho. These hypotheses
were organized into seven organizational models incor-
porating all combinations of barriers, distance, and
landscape-resistance gradients. Our primary goal was to
determine the relative influences of genetic isolation by
putative movement barriers, geographical distance, roads,
land cover, and topographical slope as well as to identify

the combination of factors with the greatest support as a
causal model explaining gene flow among black bears in
the study area.

Methods
Study Area

The study area consists of an approximately 3,000-km*
area of the Idaho Panhandle National Forest, located in
the extreme northern tip of Idaho (fig. 1) and comprising
parts of the Selkirk and Purcell mountain ranges. The
topography is mountainous, with steep ridges, narrow val-
leys, and many cliffs and cirques at the highest elevations.
Elevation ranges from approximately 700 to 2,400 m. The
Kootenai River trench bisects the study area, separating
the Selkirk Mountains on the west from the Purcell Moun-
tains on the east with a 5-8-km-wide unforested, agri-
cultural valley and a broad, deep river. This valley is the
putative barrier used in our barrier model, discussed be-
low. The climate is characterized by cold, wet winters and
mild summers. The area is heavily forested, with Abies
lasiocarpa (subalpine fir) and Picea engelmannii (Engel-
mann spruce) codominant above 1,300 m and a diverse
mixed conifer forest dominating below 1,300 m.

Genetic Sampling

Genetic samples were obtained using noninvasive hair
snaring during June, July, and August 2003. Hair snaring
followed the protocols of Proctor et al. (2005). Each sam-
pling station was checked at approximately 14-day inter-
vals. All hair on each barb was considered a single sample
for lab work (Woods et al. 1999; Mowat and Strobeck
2000). The corrals were set at 266 National Vegetation Pilot
plots (Morgan et al. 2004; fig. 1). The National Vegetation
Pilot project established a grid of permanent vegetation
plots at 1.6-km spacing across the study area to allow
monitoring of vegetation change.

Genetic Analysis

We subsampled by randomly selecting one sample from
each series of adjacent samples in a corral unless the series
of adjacent samples was more than five, in which case the
first and last samples were used. We detected no deviations
from Hardy-Weinberg proportions, found no evidence of
gametic disequilibrium, and calculated a probability of
identity (Evett and Weir 1998) of 1.82 x 10™" and a prob-
ability of identity assuming siblings (Evett and Weir 1998)
of 1.26 x 10™* for a nine-locus genotype, allowing ample
power to discern individuals. Expected heterozygosity in
the Purcell mountain range was 0.78 and in the Selkirk



N

A

QO Bear Locations
@ Snare Locations
Kilometers

10

Landscape Genetics of Black Bears 000

Montana

Figure 1: Study area orientation map. The geographical coordinates for each hair snare are shown as black dots and the locations for each bear as
circles. When a bear was sampled at more than one snare, we used the centroid of its multiple captures as its location for analysis.

mountain range was 0.80, while observed heterozygosity
was 0.76 and 0.80 for each range, respectively (Schwartz
et al. 2006).

Genetic Distance

Each bear was assumed to represent the population of
bears at the location where it was sampled. We coded each
individual’s alleles from a nine-locus genotype as 0 (allele
absent), 1 (allele found as one of two alleles; a heterozy-
gote), or 2 (a homozygous individual with two copies of
the allele). This produced a matrix with 90 columns, one
for each allele in the pool of sampled bears, and 146 rows
representing individual bears. We used the Bray-Curtis
percentage dissimilarity measure of genetic distance
among individuals (Legendre and Legendre 1998), pro-
ducing a matrix containing the genetic distances among
all pairs of sampled bears. This calculation assumes that
the loci are independent, consistent with linkage disequi-
librium results. The a, metric (Rousset 2000) has been
suggested as a measure of genetic dissimilarity among in-
dividuals. However, we feel percentage dissimilarity is pref-
erable because it accounts for the semiquantitative nature
of the three-state genetic data and also discounts double
negatives. The Pearson correlation coefficient between our

genetic measure and the a, measure was more than 0.97,
indicating that for this data set, the two metrics are nearly
identical and would yield similar conclusions.

Organizational Models

A priori, we identified three potential drivers of genetic
structure in this black bear population, including isolation
by the Kootenai River valley as a barrier, isolation by geo-
graphic distance, and isolation by landscape-resistance gra-
dients. There are seven possible patterns of causality
among the barrier, distance, and landscape-resistance gra-
dients and the genetic structure of this black bear popu-
lation (fig. 2). Our goal was to determine the relative sup-
port for isolation by distance and barriers in comparison
to isolation by gradients of landscape resistance. We used
causal modeling on resemblance matrices (Legendre and
Troussellier 1988; Legendre 1993) to identify which of the
seven models had the strongest support. Each organiza-
tional model has a diagnostic set of statistical tests to eval-
uate its support. By comparing statistical relationships be-
tween genetic structure and each hypothesis with those
expected under each organizational model, we determined
which of the seven organizational models was fully
supported.
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Figure 2: Description of the seven organizational models tested. Model 1
is isolation by barriers; model 2, isolation by distance; model 3, isolation
by landscape-resistance gradients; model 4, isolation by a combination
of barriers and distance; model 5, isolation by distance and landscape-
resistance gradients; model 6, isolation by barriers and landscape-
resistance gradients; and model 7, isolation by a combination of barriers,
distance, and landscape-resistance gradients. Diagnostic expectations are a
list of the partial Mantel tests used to evaluate each model and the expected
patterns of significance if the model is correct: G = genetic distance;
B = barrier; D = distance; L, = landscape. A period separates the main
matrices on the left from the covariate matrix on the right that is partialed
out in the partial Mantel tests. For example, BG.D is a partial Mantel test
between the barrier and genetic-distance matrices, with the geographic-
distance matrix partialed out. The landscape factor has a subscript of 108,
indicating that there are 108 landscape cost-distance matrices representing the
factorial combination of the factors elevation, slope, roads, and land cover.

Landscape-Resistance Gradients

Isolation by distance and isolation by barriers are the hy-
potheses most commonly tested in the literature (Wright
1943; Forbes and Hogg 1999; Schwartz et al. 2002). Iso-
lation by a barrier was represented as a single hypothesis,
wherein we predicted panmixia on either side of the Koo-
tenai River valley, with no gene flow between. Isolation
by distance was also represented as a single hypothesis,
with genetic similarity predicted to decrease linearly with
Euclidian distance.

In addition to the models of isolation by a barrier
and isolation by distance, we produced 108 landscape-
resistance surfaces representing the factorial combinations
of four landscape factors: elevation, slope, roads, and land
cover (table 1). Resistance of these factors to gene flow
was modeled across four levels for elevation and three
levels for the other factors, producing 108 hypotheses. The
resistance maps corresponding to each factor were com-
bined into the 108 landscape-resistance models by addi-
tion. After addition, the minimum value on the combined
grids was 4, reflecting the sum of the minimum values of
the four factors. These hypotheses were represented by
Geographic Information System raster maps whose cell
values were equal to the hypothetical resistance of each
cell to gene flow. Before analysis, the base maps were re-
sampled to 90-m pixel size and rectified to a Universal
Transverse Mercator projection (table 2).

There were four motivations for this selection of
landscape-resistance hypotheses. First, unlike in the cases
of isolation by barrier or isolation by distance, there are
many factors that can potentially influence gene flow when
it is modeled as a function of landscape structure. A priori,
it is questionable to assume which landscape features are
most strongly related to gene flow and in what ways. Thus,
a multifactor approach is necessary. Second, the four fac-
tors of elevation, slope, roads, and land cover are the land-
scape features to which black bears respond most strongly
(Brody and Pelton 1989; Lyons et al. 2003). Slope and
elevation are the most informative measures of physiog-
raphy; roads and land cover have well-established rela-
tionships to habitat quality and movement for a wide range
of organisms (Bowne and Bowers 2004; Cushman 2006)
and for black bears in particular (Michell and Powell 2003;
Gaines et al. 2005). Third, we specified a range of levels
for each factor, allowing the relative importance of each
factor to be expressed in a multifactor model. In this ap-
proach, models are most sensitive to the relative magnitude
of the factors, not their specific values. Thus, the levels
were chosen to cover the range of each factor on the land-
scape, and all factors were scaled between 1 and 10, al-
lowing each factor to speak with equal weight. Finally, we
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Table 1: Description of factors and levels combined to create 108 landscape-resistance hypotheses

Factor and level Code Description
Land cover:
High selectivity FH Low-resistance forest; high-resistance nonforest*
Low selectivity FL Low-resistance forest; moderate-resistance nonforest*
Null FN No relationship with land cover classes
Slope:
High resistance SH High resistance due to slope®
Low resistance SL Low resistance due to slope®
Null SN No relationship with slope
Roads:
High resistance RH High resistance due to roads®
Low resistance RL Low resistance due to roads®
Null RN No relationship with roads
Elevation:
High elevation EH Minimum resistance at high elevation*
Middle elevation EM Minimum resistance at middle elevation®
Low elevation EL Minimum resistance at low elevation?
Null EN No relationship with elevation
* See table 3.
" See figure 4.
 See text.
4 See figure 3.

produced models representing all combinations of these
factors.

Landscape resistance due to elevation was modeled at
four levels, including a null model. Resistance was modeled
as an inverted Gaussian function and was parameterized
with a minimum of 1 and a maximum approaching an
asymptote of 10. The standard deviation of the curve was
1,000 m. The levels differed only in the elevation at which
the function reached its minimum value. The three levels
of elevation had resistance minima at 500, 1,000, and 1,500
m, respectively (fig. 3). These three levels reflect a range
of potential relationships between resistance to movement
and elevation, with increasing resistance to gene flow at
elevations higher and lower than the minima, with a max-
imum resistance of 10 times that of the minima achieved
at the asymptote. The null model predicted resistance of
1 at all elevations.

Landscape resistance due to slope was modeled as a
linear function and included three levels. The linear func-

Table 2: Metadata for all coverages used in the analysis

tions had y-intercepts at 1 and differed only in slope. Topo-
graphical slope was measured in percent. The linear func-
tions were parameterized such that the low and high slope
effect models produced resistances of two and five times,
respectively, that of the y-intercept at a slope of 100% (fig.
4). The null model predicted a resistance of 1 at all slopes.

Landscape resistance due to roads and land cover were
both represented as categorical functions. The study area
contains a range of road types and traffic volumes. How-
ever, no data on traffic volume were available, so this
analysis considered only road type. Roads were classified
as “major highway” and “other road,” which included
county and U.S. Forest Service gated and ungated roads.
High and low road effect levels assigned resistance values
of 5 and 10 to “major highway” and 2 and 5 to “other
road,” respectively. All nonroad pixels were given a value
of 1. The null model predicted a road resistance of 1 for
all pixels.

We tested three levels of resistance due to land cover,

Coverage Description Source

Land cover Categorical map of land cover classes® Gap analysis program
Roads Raster map of roads, including two classes: major highways and other roads ~ TIGER 1997°

Slope Slope in percent Derived from 30-m DEM
Elevation Elevation in meters Derived from 30-m DEM

Note: All coverages were resampled to raster grids with 90-m cell size and coregistered in a Universal Transverse Mercator projection.

DEM = digital elevation model.
* See table 3 for list of classes and resistance values assigned.
® http://www.census.gov/geo/www/tiger/.
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Figure 3: Functions used to develop hypotheses regarding resistance due
to elevation. The four levels include three Gaussian functions of resistance
with respect to elevation and one null model. The three Gaussian levels
each have a standard deviation of 1,000 m, a minimum of 1, and a
maximum of 10. They differ only in the elevation at which the minimum
resistance is achieved: 500 m for EL, 1,000 m for EM, and 1,500 m for
EH (see table 1 for abbreviations). The null model predicts a resistance
of 1 for all elevations.

including a null model. The land cover classification used
in this analysis included 26 categories representing differ-
ent land cover types (table 3). The first level reflected a
strong relationship between gene flow and forest cover,
with strong resistance to movement across nonforest clas-
ses, such as urban and agricultural areas. The second level
reflected a less obligate relationship with forest cover, and
the third level was the null model, which predicted no
relationship between land cover and gene flow (table 3).

Cost Models

Cost distances are the cumulative costs associated with
traversing the least-cost route from each individual bear’s
location to every other bear’s location. When an individual
bear was found at more than one sample location, the
centroid of the locations was used. We used the ArcGIS
COSTDISTANCE function (ESRI 2003) to create cost ma-
trices reflecting the least-cost distance from the location
at which each bear’s DNA sample was recorded to every
other bear’s location across each of the 108 resistance
surfaces.

The isolation-by-distance hypothesis yielded a cost ma-
trix that contained the Euclidean distances based on UTM
coordinates between all pairs of bears. The barrier model
was represented as a categorical model matrix (Legendre
and Legendre 1998) that predicted panmixia within both
the Selkirk and Purcell mountain ranges, with the Kootenai
River valley a perfect barrier between (fig. 1).

Mantel Tests

We used Mantel (Mantel 1967) and partial Mantel
(Smouse et al. 1986) tests within a causal modeling frame-
work (Legendre 1993) to assess the support for seven or-
ganizational models containing the 110 resistance hypoth-
eses (fig. 2). Causal modeling on resemblance matrices uses
simple and partial Mantel correlation coefficients to eval-
uate the degree of support for alternative hypotheses of
causality (Legendre and Troussellier 1988). The Mantel test
measures the degree of association between two dissimi-
larity matrices. In this case, these matrices correspond to
the hypothetical least-cost distances (independent-variable
set) and the genetic differences among bears (dependent-
variable set). Significant Mantel correlation between the
genetic matrix and a cost matrix would indicate that the
genetic structure of the population is correlated with a
specific landscape-resistance hypothesis. In multivariate
correlational modeling, the apparent strength of expla-
nation increases with increasing numbers of parameters,
even if the added variables have no actual relationship with
the response variable. In our approach, we tested a single
response variable (genetic distance) against single pre-
dictor variables (each landscape-resistance hypothesis).
Because all of the factors associated with a landscape-
resistance hypothesis were combined to produce a single
resistance hypothesis, there is no inflation of explained
variance due to number of factors associated with a re-
sistance hypothesis. We therefore ranked Bonferroni-
corrected P values to evaluate support. All Mantel tests
were conducted using R-Package software (Legendre and
Vaudor 1991).

We used a two-step procedure to evaluate these models.
First, we computed the Mantel correlation and Monte

SH

SL

Resistance
[#4]
1

1 SN

0 T T T T T 1
0 20 40 60 80 100 120

Percent Slope

Figure 4: Linear functions used to develop hypotheses regarding resis-
tance due to slope. SH is high resistance, SL is low resistance, and SN is
the null model, predicting that slope has no effect on gene flow.



Table 3: Cover classes and resistance values used in land
cover—resistance modeling

Resistance  Resistance
Cover class in FL in FH

Urban, water 10 10
Water 10 10
Surface mining 10
Shrub flats
Rock
Agricultural, snowfields, or ice
Snowfields or ice
Mixed barren lands
Alpine meadow, shrub-
dominated riparian, grass-
dominated riparian, wet-
lands, mesic upland shrub,
xeric upland shrub, sub-
alpine meadow 3 6
Clear-cut conifer, burned forest 2 4
Forest-dominated riparian, as-
pen, ponderosa pine, lodge-
pole pine, western red cedar,
western hemlock, mixed
conifer, mixed subalpine for-
est, mixed whitebark pine 1 1

CBRC LN B N N
AN o

Note: FL = low-selectivity land cover model; FH = high-selectivity
land cover model (table 1).

Carlo P value for each simple and partial Mantel corre-
lation between the genetic-distance matrix and the ma-
trices corresponding to the barrier, distance, and landscape
hypotheses. This involved computing simple and partial
Mantel correlation coefficients for each organizational
model (fig. 2). Second, we compared the observed pattern
of correlation coefficients and P values with the expecta-
tions of the seven organizational models. We eliminated
organizational models that were inconsistent with the pat-
tern of support among resistance hypotheses and identified
the organizational model with the greatest support.

Results

A total of 663 samples were collected from 169 of the 266
hair snare stations. We ran microsatellite analyses on 245
samples, from which 146 unique bears were identified (97
samples were recaptures, and 2 samples were discarded
due to multiple individuals leaving samples at a barb or
poor quality of samples; fig. 1). Approximately 87% of all
bears were detected at only one snare. Eighteen bears were
captured at two snares, one at three, and no bears were
detected at more than three stations. The average and max-
imum distances between detections were 3.4 and 7.5 km,
respectively. Of the bears captured at multiple locations,
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no individuals were captured on both sides of the Kootenai
River valley or in areas separated by major ridges.

Significance and Rankings of the 110 Models

All 110 resistance hypotheses were significantly related to
the pattern of genetic difference among bears after Bon-
ferroni correcting for experiment-wise error rates (cor-
rected P< .05 in all cases). The barrier hypothesis was
ranked 102 out of 110 in terms of the magnitude of the
Mantel correlation coefficient. The isolation-by-distance
hypothesis was more strongly supported and was ranked
35 out of the 110 total models.

Support for Organizational Models

Only one of the seven hypothetical organizational models
was fully supported by all statistical expectations (table 4).
This model, model 3, predicts that gene flow in this pop-
ulation is influenced predominantly by landscape-resistance
gradients with no significant independent relationships with
the Kootenai River barrier or geographical distance (fig. 2).

Sixty-six of the 108 landscape-resistance hypotheses
were significantly (P <.05) related to genetic patterns
among bears after the effects of the barrier hypothesis were
removed. Ten of the landscape-resistance hypotheses were
significantly related (P < .05) to the genetic patterns after
the effects of distance were removed with partial Mantel
tests (table 5).

After the effects of distance are partialed out, ranking the
10 significant partial models by the Monte Carlo P value
provides a means to determine which hypotheses have the
greatest support and to identify the combination of land-
scape factors most related to the genetic structure of this
population (fig. 5). The 10 significant partial models were
all concentrated in one small area of a four-dimensional
factorial space (roads, elevation, forest cover, slope), indi-
cating a unimodal peak of support. Within this small area
of concentration, the best-supported models were associated
with minimum resistance to movement at middle eleva-
tions, high resistance of nonforested habitat to movement,
no relationship with slope, and equivocal support for the
different levels of road resistance (fig. 5). A map extrapo-
lating the understanding from the most highly supported
model across the entire study area is shown in figure 6.

Discussion

Causal modeling (Legendre and Troussellier 1988) of re-
lationships between genetic dissimilarity among individ-
uals and multiple alternative hypotheses of landscape re-
sistance provides a means to rigorously evaluate the factors
that limit gene flow. By testing seven organizational mod-



Table 4: Evaluation of seven organizational hypotheses

Model and expectation

Monte Carlo P value

Model 1, isolation by barrier:
BG.D >0
BGL>0
DG.B NS
LG.B NS
Model 2, isolation by distance:
DGB >0
DGL>0
BG.D NS
LG.D NS
Model 3, isolation by landscape resistance:
LGB>0
LGD >0
BG.L NS
DG.L NS
Model 4, isolation by barrier and distance:
BGL>0
DG.L>0
BG.D >0
DGB >0
LG.B NS
LG.D NS
Model 5, isolation by distance and landscape:
LGB >0
DGB >0
LG.D >0
DG.L>0
BG.L NS
BG.D NS
Model 6, isolation by barrier and landscape:
BG.D >0
LGB>0
LGD >0
DG.B NS
DG.L NS
Model 7, isolation by barrier, distance, and landscape:
BG.D >0
BGL>0
DGB >0
DGL>0
LGB>0
LGD >0

.065
108 of 108 >.05

.035
66 of 108 <.05

.035

108 of 108 >.05
.065

10 of 108 <.05

66 of 108 <.05
10 of 108 <.05
108 of 108 >.05
108 of 108 >.05

108 of 108 >.05
108 of 108 >.05
.065
.035
66 of 108 <.05
10 of 108 <.05

66 of 108 <.05
.035
10 of 108 <.05
108 of 108 >.05
108 of 108 >.05
.065

.065
66 of 108 <.05
10 of 108 <.05

.035
108 of 108 <.05

.065
108 of 108 <.05

.035
108 of 108 <.05
66 of 108 <.05
10 of 108 <.05

Note: Boldface indicates that the P value matches the expectations of the model. Models with

any P values not matching expectation are not supported. Model 3, in which landscape resistance

is the dominant effect, is the only model that is supported by all expectations. B = barrier,
G = genetics, D = distance, L = landscape. The period in the expectation abbreviations sep-

arates the covariate matrix from the two primary matrices. For example, BG.D indicates a
Mantel test between the barrier and genetic matrices, with the distance matrix partialed out.

NS = not significant.



Table 5: Significantly supported landscape models

Model Monte Carlo P value
FHEMRHSN | D 011
FHEMRNSN | D .017
FHEMRLSN | D 018
FLEMRLSN | D .022
FLEMRHSN | D .031
FNEMRLSN | D .037
FHENENSN | D .039
FNEMRHSN | D .039
FNEMRNSN | D .042
FLENRNSN | D .049

Note: Abbreviations for models consist of combinations of
factor and level for factors forest (F), elevation (E), roads (R),
and slope (S) at levels high (H), middle (M), low (L), and none
(N); | D indicates that the distance matrix has been partialed out.
For example, FHEMRNSN | D indicates high relationship to forest
cover, minimum resistance at middle elevation, no relationship
to roads, and no relationship to slope.

els, we were able to determine whether a black bear pop-
ulation in northern Idaho is primarily structured by the
Kootenai River barrier, distance, or landscape-resistance
gradients. The results indicate that isolation-by-barrier and
isolation-by-distance models are poorly supported in com-
parison to that of isolation by landscape-resistance gra-
dients. Evaluating multiple competing hypotheses identi-
fied land cover and elevation as the dominant factors
associated with genetic structure. The unimodal pattern
of increasing significance within a corner of the four-
dimensional factorial provides strong support for the con-
clusion that high forest cover and middle elevations pro-
moted gene flow and that topographical slope had no
effect. Gene flow in this black bear population appears to
be facilitated by forest cover at middle elevations, inhibited
by nonforest land cover, and not influenced by topograph-
ical slope. Because of the equivocal support for the three
levels of road resistance, we cannot determine the nature
of road effects on gene flow in this population.
Movements indicated by genetic patterns represent a
subset of all movements. Except for the most recent move-
ments, only movements that led to breeding are docu-
mented. Nevertheless, our most supported models closely
conform to the known habitat use patterns of black bears.
Specifically, black bears in the eastern Cascade Mountains
selected midelevation forest types while avoiding extensive
bare areas and low-elevation forests (Lyons et al. 2003).
In North Carolina, bear use was positively related to slope
and low-mid-elevation forests, while they avoided high
ridge tops (Powell and Mitchell 1998). Gaines et al. (2005),
studying bears in the western Cascades, found strong neg-
ative associations with roads; our models were equivocal.
However, the study area of Gaines et al. (2005) included
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major roads, such as Interstate 90, that are not present in
our study area.

Understanding the ultimate causes of the observed pat-
terns of genetic structure in the population will depend
on directly linking the behavior and movement of indi-
viduals to population-level patterns of gene flow. In ad-
dition, such movement studies could provide empirically
estimated resistances associated with different landscape
variables. In our study we attempted to bracket a range
of possible relationships between landscape structure and
gene flow by specifying multiple levels of each factor. It
would be preferable to obtain empirical estimates from
observed patterns of movement; however, no such data
was available for bears in our study area.

This analysis differed from traditional population ge-
netics approaches in two important ways: first, by calcu-
lating pairwise genetic distance between individuals rather
than between groups, and second, by evaluating multiple
competing organizational models to infer causation. Most
commonly, population structure has been assessed using
Fy1, Ggp, Or assignment tests to measure structure between
populations on either side of a putative barrier (e.g., Krings
et al. 1999; Castella et al. 2000; Burton et al. 2002; Manel
et al. 2005; Riley et al. 2006; but see Dupanloup et al. 2002;
Manel et al. 2003). When we examined our data set using
these methods, we obtained equivocal results. The param-
eter Gy, a standardized form of G, that is scaled by the
maximum level possible given the observed amount of
genetic variation (Hedrick 2005), is 0.097 between the Sel-
kirk and Purcell Mountains. An assignment test correctly
assigned 74% (54/73) of bears sampled in the Purcell
Mountains and 89% (65/73) of bears sampled in the Sel-
kirk Mountains (Schwartz et al. 2006). Thus, based on
traditional approaches, we would conclude that bears in
northern Idaho are neither panmictic nor fully substruc-
tured by the agricultural valley separating these demes.
While these results are consistent with our more general
results, they are less informative concerning those factors
that influence black bear movement and population
substructuring.

Of the 110 tested hypotheses of landscape resistance to
gene flow, two were similar to hypotheses tested in most
past landscape genetics studies: panmictic populations sep-
arated by a putative barrier and isolation by distance. The
major contribution of this study is the formal comparison
of the amount of support for these hypotheses in com-
petition with a factorial of potential relationships with four
major attributes of landscape structure. Evaluation of the
seven organizational models indicated that genetic dif-
ferentiation in this population is primarily related to
landscape-resistance gradients, with no independent dis-
tance or barrier effects. Thus, both the distance and barrier
models are likely to be correlations with, and not causes
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Figure 5: Visualization of the 10 landscape-resistance hypotheses that remain statistically significant (P < .05 ) after the effects of geographical distance
are partialed out. The space is a factorial of three landscape factors: roads, elevation, and land cover (for abbreviations, see table 1). All significant
partial landscape models can be plotted in this subspace because the fourth factor, slope, had no relationship with genetic distance. The cubes each
represent one of the 10 significant landscape-resistance models. The cubes are colored in a gradient from blue to red, with red being the most
supported models based on the Monte Carlo significance of the partial Mantel test. The P values corresponding to each cube are found in table 5.
The significant models are all clustered in a small subregion of the four-dimensional factorial space, with highest support for the models corresponding
to strong relationships to forest cover and middle elevation, with equivocal support for the different levels of the roads factor and no relationship

with slope.

of, the observed genetic pattern. As figure 6C shows, the
Kootenai River valley is the largest area of high resistance
in this landscape and functionally may be a partial barrier.
But this is not because it is a special structure in an oth-
erwise permeable landscape. It emerges as a barrier because
it contains large contiguous areas of landscape features
associated with high resistance to gene flow.

One negative consequence of using grouping methods
for population genetics is that assumptions of homoge-
neity within groups, if false, lead to large within-group
variance, obscuring between-group differences. The reason
that the barrier model performed relatively poorly was not
because a barrier was assumed when none existed. It per-
formed poorly because the panmictic assumptions on ei-
ther side of the barrier were incorrect. Thus, in many cases
it may be more parsimonious and informative to represent
landscape resistance and its relationships with population
structure as a gradient phenomenon rather than a cate-
gorical, patch-based entity. Representing the population
structure in this way preserves internal information that
would otherwise be lost about how genetic characteristics
vary across space. Also, by representing population struc-
ture as a gradient phenomenon, it is possible to compare
population gradients with landscape-resistance gradients,
allowing rigorous evaluation of relationships between spe-
cific environmental features and population connectivity

over large geographic extents. For the specific purpose of
determining landscape connectivity and corridors, it is not
enough to know that genetic structure exists. We need to
know what landscape factors contributed to that structure.

Several authors have tested one or a few landscape-
resistance models against global panmixia, barriers, or iso-
lation by distance (e.g., Andreassen et al. 1998; Danielson
and Hubbard 2000; Coulon et al. 2004, 2006). Our work
extends these concepts by providing a comprehensive, fac-
torial, multimodel approach in order to evaluate alter-
native hypotheses and identify the combination of envi-
ronmental factors that appear to drive landscape-level
patterns of gene flow.

Scope and Limitations

Genetic structure can have a substantial time lag in its
response to changes in gene flow. This lag is related to
effective population size (N,) and substructure (Wright
1943; Nei and Chakravarti 1977; Waples 1998). For in-
stance, using a basic equation of Wright (1943) that relates
Fy;, divergence time from a common ancestor (), and N,
(Firy = 1 — "), it can easily be shown that reaching
F; = 0.1 takes between two and 21 generations as N,
changes from 10 to 100. Given the difficulty in assessing
N, in our open study area, however, we can give only

e
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Figure 6: A, Simplification of the land cover map used in the analysis. B, Digital elevation model of the study area. C, Visualization of the most
supported model (FHEMRHSN | D; table 5) of landscape resistance. This model predicts that gene flow in this study area is strongly related to land
cover, with movement facilitated by forest cover and inhibited by nonforest cover types; that resistance to gene flow is lowest at middle elevations
and increases at both low and high elevations; that gene flow is reduced by roads; and that gene flow is unrelated to slope.

qualified statements on the effects of time lags. In our
study, this time lag to equilibrium is a possible cause of
the equivocal results obtained for the effects of roads on
landscape resistance. Many of the roads in our study area
were built in the past 20-40 years, and virtually all roads
were absent 100 years ago. The same concern can be raised

for our land cover—resistance model. While the overall land
cover has probably changed relatively little in the past 100
years, some cover classes in the land cover—resistance
model, such as increased agricultural development in the
Kootenai River valley, were more recent events. Thus, the
Kootenai valley may now be a greater barrier than the
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genetics indicate (though we know from ongoing radio
telemetry studies that bears still cross it; J. Hayden, un-
published data). In general, however, the factors included
in these models—particularly slope, elevation, and coarse
land cover—have changed very little over the past century
or more. Thus, we believe our results are robust with
respect to recent changes in the landscape.

Another potential issue is translocation of individuals. In
our study area, local governments have translocated several
dozen bears from across the study area to the northern
Selkirk Mountains over the past several decades (W. Wak-
kinen, unpublished data). These translocations serve to mix
populations and dampen the effects of landscape-resistance
gradients on genetic differences. In our study, however, we
observed highly significant patterns of genetic differentia-
tion despite these translocations, suggesting that the rela-
tionships between landscape structure and gene flow are
strong.

Our approach evaluates statistical support for multiple
organizational models of factors influencing gene flow.
These methods do not, however, optimize estimates of
resistance parameters. While our analysis provides clear
support for landscape-resistance gradients based on land
cover and elevation as the dominant drivers of gene flow,
it does not provide optimal estimates of the landscape
characteristics that minimize resistance and hence repre-
sent the best potential corridors. Further work in model
optimization (see Dupanloup et al. 2002 for an example
using genetic data) to estimate parameter values will be
needed to determine the particular resistance parameters
associated with each landscape variable.

Conclusion

In northern Idaho, genetic structure in the black bear
population is related to landscape gradients of land cover
and elevation. The bear population in this study area is
not divided into two panmictic subpopulations within the
Selkirk and Purcell mountain ranges, separated by the
Kootenai River valley, nor is its genetic structure best de-
scribed by isolation by distance. Gene flow in this black
bear population varies along gradients of landscape resis-
tance related to elevation and forest cover.

By evaluating a full factorial of 110 resistance hypoth-
eses, we were able to identify and map the strongest mea-
sured relationship between black bear genetic structure
and landscape patterns. Such empirically based fine-scale
maps of landscape resistance are needed by scientists, man-
agers, and conservationists to facilitate evaluation of the
potential effects of habitat fragmentation and of altered
management and disturbance regimes on population con-
nectivity. Finally, as more of the western landscape is being
developed, there have been increasing numbers of efforts

to protect corridors that facilitate movement of organisms.
Using a multimodel landscape-resistance approach tested
with genetic data can help robustly delineate potential cor-
ridors designed for specific species.

Acknowledgments

Funding for this work was provided by the Joint Fire Sci-
ence Program, the U.S. Forest Service Northern Region,
the U.S. Forest Service Rocky Mountain Research Station,
and the Idaho Department of Fish and Game. We thank
E Allendorf, C. Flather, and R. King for their helpful com-
ments and suggestions on an earlier version of this man-
uscript. We thank K. Pilgrim for her help with the labo-
ratory work and database management.

Literature Cited

Andreassen, H. P., K. Hertzberg, and R. A. Ims. 1998. Space-use
responses to habitat fragmentation and connectivity in the root
vole Microtus oeconomus. Ecology 79:1223-1235.

Bowne, D. R., and M. A. Bowers. 2004. Interpatch movements in
spatially structured populations: a literature review. Landscape
Ecology 19:1-20.

Brody, A. J., and M. R. Pelton. 1989. Effects of roads on black bear
movements in North Carolina. Wildlife Society Bulletin 17:5-10.

Burton, C., C. J. Krebs, and E. B. Taylor. 2002. Population genetic
structure of the cyclic snowshoe hare (Lepus americanus) in south-
western Yukon, Canada. Molecular Ecology 11:1689-1701.

Carr, L. W, and L. Fahrig. 2001. Effect of road traffic on two am-
phibian species of different vagility. Conservation Biology 15:1071—
1078.

Castella, V., M. Ruedi, L. Excoffier, C. Ibanez, R. Arlettaz, and J.
Hausser. 2000. Is the Gibraltar Strait a barrier to gene flow for
the bat Myotis myotis (Chiroptera: Vespertillionidae)? Molecular
Ecology 9:1761-1772.

Coulon, A., J. E Cosson, J. M. Angibault, B. Cargnelutti, M. Galan,
N. Morellet, E. Petit, S. Aulagnier, and A. J. M. Hewison. 2004.
Landscape connectivity influences gene flow in a roe deer popu-
lation inhabiting a fragmented landscape: an individual-based ap-
proach. Molecular Ecology 13:2841-2850.

Coulon, A., G. Guillot, J. E Cosson, J. M. A. Angibault, S. Aulagnier,
B. Cargnelutti, M. Galan, and A. J. M. Hewison. 2006. Genetic
structure is influenced by landscape features: empirical evidence
from a roe deer population. Molecular Ecology 15:1669-1679.

Cushman, S. A. 2006. Effects of habitat loss and fragmentation on
amphibians: a review and prospectus. Biological Conservation 128:
231-240.

Danielson, B. J., and M. W. Hubbard. 2000. The influence of corridors
on the movement behavior of Peromyscus polionotus in experi-
mental landscapes. Landscape Ecology 15:323-331.

deMaynadier, P. G., and M. L. Hunter Jr. 2000. Road effects on
amphibian movements in a forested landscape. Natural Areas Jour-
nal 20:56—65.

Dupanloup, 1., S. Schneider, and L. Excoffier. 2002. A simulated
annealing approach to define the genetic structure of populations.
Molecular Ecology 11:2571-2581.

ESRI. 2003. ArcGIS. Environmental Systems Research Incorporated,
Redlands, CA.



Evanno, G., S. Regnaut, and J. Goudet. 2005. Detecting the number
of clusters of individuals using the software STRUCTURE: a sim-
ulation study. Molecular Ecology 14:2611-2620.

Evett, I. W., and B. S. Weir. 1998. Interpreting DNA evidence. Sinauer,
Sunderland, MA.

Fahrig, L., J. H. Pedlar, S. E. Pope, P. D. Taylor, and J. E. Wegner.
1995. Effect of road traffic on amphibian density. Biological Con-
servation 73:177-182.

Forbes, S. H., and J. T. Hogg. 1999 Assessing population structure
at high levels of differentiation: microsatellite comparisons of big-
horn sheep and large carnivores. Animal Conservation 2:223-233.

Frankham, R., J. D. Ballou, and D. A. Briscoe. 2002. Introduction
to conservation genetics. Cambridge University Press, Cambridge.

Gaines, W. L., A. L. Lyons, J. E. Lehmkuhl, and K. J. Raedeke. 2005.
Landscape evaluation of female black bear habitat effectiveness
and capability in the north Cascades, Washington. Biological Con-
servation 125:411-425.

Gibbs, J. P. 1998. Amphibian movements in response to forest edges,
roads, and streambeds in southern New England. Journal of Wild-
life Management 62:584-589.

Gompper, M. E,, J. L. Gittleman, and R. K. Wayne. 1998. Dispersal,
philopatry, and genetic relatedness in a social carnivore: comparing
males and females. Molecular Ecology 7:157-163.

Hedrick, P. W. 2005. A standardized genetic differentiation measure.
Evolution 59:1633-1638.

Kohn, M. H., E. C. York, D. A. Kamradt, G. Haught, R. M. Sauvajot,
and R. K. Wayne. 1999. Estimating population size by genotyping
faeces. Proceedings of the Royal Society B: Biological Sciences 266:
657-663.

Krings, M., H. Geisert, R. W. Schmitz, H. Krainitzki, and S. Péibo.
1999. DNA sequence of the mitochondrial hypervariable region II
from the Neandertal type specimen. Proceedings of the National
Academy of Sciences of the USA 96:5581-5585.

Lande, R. 1988. Genetics and demography in biological conservation.
Science 241:1455-1460.

Legendre, P. 1993. Spatial autocorrelation: trouble or new paradigm?
Ecology 74:1659-1673.

Legendre, P, and L. Legendre. 1998. Numerical ecology. 2nd English
ed. Elsevier, Amsterdam.

Legendre, P.,, and M. Troussellier. 1988. Aquatic heterotrophic bac-
teria: modeling in the presence of spatial autocorrelation. Lim-
nology and Oceanography 33:1055-1067.

Legendre, P.,, and A. Vaudor. 1991. The R package: multidimensional
analysis, spatial analysis. Université de Montréal.

Lyons, A. L., W. L. Gaines, and C. Servheen. 2003. Black bear resource
selection in the northeast Cascades, Washington. Biological Con-
servation 113:55— 62.

Manel, S., M. K. Schwartz, G. Luikart, and P. Taberlet. 2003. Land-
scape genetics: combining landscape ecology and population ge-
netics. Trends in Ecology & Evolution 18:189-197.

Manel, S., O. E. Gaggiotti, and R. S. Waples. 2005. Assignment meth-
ods: matching biological questions with appropriate techniques.
Trends in Ecology & Evolution 20:136-142.

Manning, A. D., B. Lindenmayer, and H. A. Nix. 2004. Continua
and umwelt: novel perspectives on viewing landscapes. Oikos 104:
621-628.

Mantel, N. 1967. The detection of disease clustering and a generalized
regression approach. Cancer Research 27:209-220.

McGarigal, K., and S. A. Cushman. 2005. The gradient concept of
landscape structure. Pages 112-119 in J. Wiens and M. Moss, eds.

Landscape Genetics of Black Bears 000

Issues and perspectives in landscape ecology. Cambridge University
Press, Cambridge.

Mclntyre, S., and G. W. Barrett. 1992. Habitat variegation, an alter-
native to fragmentation. Conservation Biology 4:197-202.

Michell, M. S., and R. A. Powell. 2003. Response of black bears to
forest management in the southern Appalachian Mountains. Jour-
nal of Wildlife Management 67:692-705.

Mills, L. S., and E W. Allendorf. 1996. The one-migrant-per-
generation rule in conservation and management. Conservation
Biology 10:1509-1518.

Morgan, T. A,, C. E. Keegan III, T. P. Spoelma, T. Dillon, A. L. Hearst,
F. G. Wagner, and L. T. DeBlander. 2004. Idaho’s forest products
industry: a descriptive analysis. Resource Bulletin RMRS-RB-4.
USDA Forest Service, Fort Collins, CO.

Mowat, G., and C. Strobeck. 2000. Estimating population size of grizzly
bears using hair capture, DNA profiling, and mark-recapture anal-
ysis. Journal of Wildlife Management 64:183-193.

Nei, M., and A. Chakravarti. 1977. Drift variances of Fst and Gst
statistics obtained from a finite number of isolated populations.
Theoretical Population Biology 11:307-325.

Powell, R. A., and M. S. Mitchell. 1998. Topographical constraints
and home range quality. Ecography 21:337-341.

Pritchard, J. K., P. Stephens, and P. Donnelly. 2000. Inference of
population genetic structure using multilocus genotype data. Ge-
netics 155:945-959.

Proctor, M. E, B. N. McLellan, C. Strobeck, and R. M. R. Barclay.
2005. Genetic analysis reveals demographic fragmentation of griz-
zly bears yielding vulnerability by small populations. Proceedings
of the Royal Society B: Biological Sciences 272:2409-2416.

Riley, S. P. D., J. P. Pollinger, R. M. Sauvajot, E. C. York, C. Bromley,
T. K. Fuller, and R. K. Wayne. 2006. A southern California freeway
is a physical and social barrier to gene flow in carnivores. Molecular
Ecology 15:1733-1741.

Rousset, F.,, 2000. Genetic differentiation between individuals. Journal
of Evolutionary Biology 13:58-62.

Saccheri, I. J., R. A. Nichols, and P. M. Brakefield. 2001. Effects of
bottlenecks on quantitative genetic variation in the butterfly Bi-
cyclus anynana. Genetical Research 77:167-181.

Schwartz, M. K., L. S. Mills, K. McKelvey, L. S. Ruggiero, and F. W.
Allendorf. 2002. DNA reveals high dispersal synchronizing the
population dynamics of lynx. Nature 415:520-522.

Schwartz, M. K., S. A. Cushman, K. S. McKelvey, J. Hayden, and C.
Engkjer. 2006. Detecting genotyping errors and describing black
bear movement in northern Idaho. Ursus (forthcoming).

Scribner, K. T., J. A. Blanchong, D. J. Bruggerman, B. K. Epperson,
C. Lee, Y. Pan, R. I. Shorey, H. H. Prince, S. R. Winterstein, and
D. R. Luukkonen. 2005. Geographical genetics: conceptual foun-
dations and empirical applications of spatial genetic data in wildlife
management. Journal of Wildlife Management 69:1434—-1453.

Smouse, P. E., J. C. Long, and R. R. Sokal. 1986. Multiple regression
and correlation extensions of the Mantel test of matrix corre-
spondence. Systematic Zoology 35:627—-632.

Spear, J. R, J. J. Walker, T. M. McCollom, and N. R. Pace. 2005.
Hydrogen bioenergetics in the Yellowstone geothermal ecosystem.
Proceedings of the National Academy of Sciences of the USA 102:
2555-2560.

Taberlet, P., J. J. Camarra, S. Griffin, E. Uhres, O. Hanotte, L. P.
Waits, C. Dubois-Paganon, T. Burke, and J. Bouvet. 1997. Non-
invasive genetic tracking of the endangered Pyrenean brown bear
population. Molecular Ecology 6:869-876.



000 The American Naturalist

Tallmon, D. A., G. Luikart, and R. S. Waples. 2004. The alluring
simplicity and complex reality of genetic rescue. Trends in Ecology
& Evolution 19:489-496.

Van Horn, R. C., A. L. Engh, K. T. Scribner, S. M. Funk, and K. E.
Holekamp. 2004. Behavioral structuring of relatedness in the spot-
ted hyena (Crocuta crocuta) suggests direct fitness benefits of clan-
level cooperation. Molecular Ecology 13:449—458.

Vila, C., A. K. Sundgqvist, O. Flagstad, J. Seddon, S. Bjornerfeldt, I.
Kojola, A. Casulli, H. Sand, P. Wabakken, and H. Ellegren. 2002.
Rescue of a severely bottlenecked wolf (Canis lupus) population
by a single immigrant. Proceedings of the Royal Society of London
B 270:91-97.

Vitalis, R., and D. Couvet. 2001. Estimation of effective population
size and migration rate from one- and two-locus identity measures.
Genetics 157:911-925.

Vos, C. C., A. G. Antonisse-De Jong, P. W. Goedhart, and M. J. M.
Smulders. 2001. Genetic similarity as a measure for connectivity
between fragmented populations of the moor frog (Rana arvalis).
Heredity 86:598-608.

Waples, R. S. 1998. Separating the wheat from the chaff: patterns of
genetic differentiation in high gene flow species. Journal of He-
redity 89:438—450.

Wasser, P. M., and C. Strobeck. 1998. Genetic signatures of inter-
population dispersal. Trends in Ecology & Evolution 13:43—44.
Wiens, J. A. 2001. The landscape context of dispersal. Pages 96—109
in J. Clobert, E. Danchin, A. A. Dhondt, and J. D. Nichols, eds.

Dispersal. Oxford University Press, Oxford.

With, K. A, R. H. Gardner, and M. G. Turner. 1997. Landscape
connectivity and population distributions in heterogeneous en-
vironments. Oikos 78:151-169.

Woods, J. G., D. Patkau, D. Lewis, B. N. McLellan, M. Proctor, and
C. Strobeck. 1999. Genetic tagging of free-ranging black and brown
bears. Wildlife Society Bulletin 27:616-627.

Wright, S. 1943. Isolation by distance. Genetics 28:114—138.

Associate Editor: Michael E. Helberg
Editor: Jonathan B. Losos



