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Abstract

Vegetation pattern on landscapes is the manifestation of physical gradients, biotic response to these gradients, and
disturbances. Here we focus on the physical template as it governs the distribution of mixed-conifer forests in
California’s Sierra Nevada. We extended a forest simulation model to examine montane environmental gradients,
emphasizing factors affecting the water balance in these summer-dry landscapes. The model simulates the soil
moisture regime in terms of the interaction of water supply and demand: supply depends on precipitation and
water storage, while evapotranspirational demand varies with solar radiation and temperature. The forest cover
itself can affect the water balance via canopy interception and evapotranspiration. We simulated Sierran forests
as slope facets, defined as gridded stands of homogeneous topographic exposure, and verified simulated gradient
response against sample quadrats distributed across Sequoia National Park. We then performed a modified sensitiv-
ity analysis of abiotic factors governing the physical gradient. Importantly, the model’s sensitivity to temperature,
precipitation, and soil depth varies considerably over the physical template, particularly relative to elevation. The
physical drivers of the water balance have characteristic spatial scales that differ by orders of magnitude. Across
large spatial extents, temperature and precipitation as defined by elevation primarily govern the location of the
mixed conifer zone. If the analysis is constrained to elevations within the mixed-conifer zone, local topography
comes into play as it influences drainage. Soil depth varies considerably at all measured scales, and is especially
dominant at fine (within-stand) scales. Physical site variables can influence soil moisture deficit either by affecting
water supply or water demand; these effects have qualitatively different implications for forest response. These
results have clear implications about purely inferential approaches to gradient analysis, and bear strongly on
our ability to use correlative approaches in assessing the potential responses of montane forests to anthropogenic
climatic change.

Introduction

There are three primary agents of pattern formation on
terrestrial landscapes.Abiotic constraintssuch as ele-
vation gradients, soil heterogeneity, and microclimate
as effected by topography provide a physical template
for ecosystem processes.Biotic processessuch as de-
mographic mechanisms (establishment, growth, and
mortality), intra- and interspecific competition, and

dispersal generate a dynamic pattern on this template
(Watt 1947, Smith and Huston 1989). Finally,dis-
turbance regimesoverlay onto this primary pattern,
reacting to and interacting with the abiotic and biotic
agents of pattern formation. Various authors have il-
lustrated how these agents act and interact at various
scales (Delcourt et al. 1983, Urban et al. 1987), yet it
has proven remarkably difficult to isolate agents or to
account their relative importance in real landscapes.
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Table 1. Names and life-history parameters of tree species simulated
for Sierran conifer forests.

Species Common name Dmax
1 Hmax

1 Amax
2

Abies concolor White fir 200 70 500

Abies mangnifica Red fir 200 70 500

Calocedrus decurrensIncense-cedar 200 50 550

Pinus contorta Lodgepole pine 100 50 300

Pinus jeffreyii Jeffrey pine 200 60 700

Pinus lambertiana Sugar pine 300 70 500

Pinus monticola Western white pine 100 60 500

Pinus ponderosa Ponderosa pine 300 65 700

Quercus kellogii Black Oak 100 30 300

Plant ecologists have a long tradition in the use of
gradient analysis to infer the relative importance of
environmental factors governing plant species distri-
bution (see Stephenson 1990, for a review). Studies
over the past few decades show a strong consensus
on the relative importance of abiotic constraints in ex-
plaining gradients over hillslopes and mountainsides.
Consistently, temperature and moisture emerge as the
principal axes of direct and indirect gradient analyses.
In the case of indirect gradient analysis, these fac-
tors are often inferred rather than measured directly:
temperature is indexed as elevation or latitude, and
soil moisture as an exposure index or drought scalar
(Stephenson 1998).

Interpretation of gradient response is confounded
by a fundamental lack of independence among envi-
ronmental factors. In particular, the primary physical
gradients of temperature and soil moisture are them-
selves correlated and thus not easily separable. For
example, temperature decreases while precipitation in-
creases with increasing elevation. Further, temperature
is identified as a separate axis in gradient studies but it
directly affects evaporative demand and so cannot be
isolated from the soil moisture gradient. Thus, while
it is easy to label an ordination axis ‘temperature’
or ‘moisture’ these labels do little to elucidate the
underlying abiotic gradient complex.

Here we address the agents of pattern formation
in forested landscapes, focusing on the physical tem-
plate of forest pattern in montane landscapes of the
southern Sierra Nevada in California, USA. In com-
panion papers, we explore tree demographic response
to this template (Urban, in prep.) and the disturbance
(fire) regime (Miller and Urban 1999a–c). We use a
spatially implemented forest simulation model to as-

Table 1 continued.Environmental response parameters of tree
species simulated for Sierran conifer forests.

Species Growth3 Light4 Drought5 GDD6

Abies concolor 1550 4 175 265

Abies magnifica 1050 4 140 50

Calocedrus decurrens2150 3 185 555

Pinus contorta 2250 2 150 0

Pinus jeffreyii 1750 2 165 145

Pinus lambertiana 2450 3 165 430

Pinus monticola 1050 3 130 0

Pznus ponderosa 2350 2 185 750

Quercus kellogii 1250 1 185 590

1Maximum diameter (cm) and maximum height (m) were es-
timated from values observed for trees measured in adjacent
National Forest lands (J. Verner, U.S.F.S., pers. comm. of un-
published Forest Service data).
2Maximum age estimates taken from Minore (1979) or Burns
and Honkala (1990).
3Growth rate is nominally in units of cm3 wood m−2 LAI, but
is calibrated to field measurements.
4Shade tolerance class (1=very intolerant, 5=very tolerant)
(Minore 1979, Burns and Honkala 1990).
5Drought tolerance, as maximum sustainable number of
drought-days. These values are as calculated by the soil water
component of the forest model FM, for sandy loams at a range
of depths.
6Growing degree-days at the upper-elevation limit of the
species distribution in the study area. This value is calibrated
to reproduce observed species patterns, using degree-days as
estimated within the forest model FM.

sess the relative importance of specific site variables
as these contribute to temperature and soil moisture
gradients in Sequoia National Park. We describe the
characteristic spatial scaling of physical site variables
(elevation, slope aspect, topographic convergence, and
soil depth) as represented at the scale of a large basin,
a small watershed, and a forest stand. Our analy-
ses underscore the importance of the water balance
in governing these summer-dry systems, but simula-
tions also illustrate that simple interpretations of the
observed patterns could lead to false inferences about
underlying processes. Our findings have important im-
plications for studies that use present-day gradient
response as a basis for speculations about possible
forest responses to anthropogenic climatic change.

Study area

Our study focuses on Sequoia National Park in the
southern Sierra Nevada of California, USA (36◦35′ N,
118◦35′W). The Park encompasses a striking physical
gradient, spanning 4000 m relief over less than 100 km
distance. Vegetation ranges from foothill grassland
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and chaparral, through Ponderosa pine, the mixed
conifer zone, red fir and lodgepole pine, to high-
elevation western white pine near treeline (see species
names in Table 1). Previous studies in the area have
established a reasonable appreciation for the primary
factors shaping forest pattern (Vankat 1982, Stephen-
son 1988, 1998). In particular, Stephenson’s (1988,
1998) previous study of the soil water balance has
tempered much of our work. In this mediterranean cli-
mate, roughly 95% of total annual precipitation falls
from October through May, with monthly totals less
than 1 cm typical of July and August.

Methods

Our modeling effort is part of a larger consortium
of projects under the aegis of the National Park Ser-
vice’s (now Biological Resources Division of the US
Geological Survey) Global Change Research initiative
(Stephenson and Parsons 1993). Consistent with this
initiative, an important objective was to position our
group to make useful projections about how these sys-
tems might respond to climatic change. An equally
important goal has been to provide a framework for
integrating a variety of interrelated studies, both as
the project was developed and, in the future, to in-
corporate new results from these ongoing studies. An
explicit goal was to produce a model that could be
used to extrapolate small-scale (stand-level) data to
larger (landscape) spatial scales and long (centuries)
time scales. This paper presents a benchmark in our
efforts.

Botkin (1993) refers to several ‘levels of assump-
tions’ in model development. At a high level, the
conceptual model is assumed to be an adequate rep-
resentation of a system. At an intermediate level, the
algorithms and formulations used in the model are
assumed to adequately reproduce the processes of in-
terest. At a lower level, the actual parameterization of
these equations are assumed to fit the data adequately
over the model’s domain. Our goal has been to develop
a model that is general and robust at the high and in-
termediate levels, while acknowledging that additional
data could improve the parameterization of the model.

Model development

We extended a forest gap model (Urban et al. 1991,
Urban and Shugart 1992) for the Sierra Nevada by
expanding its physical routines (radiation, tempera-
ture, precipitation) in support of its new soil moisture

Figure 1. Schematic of feedback relationships in the main sub-
models of Facet version FM 97.5. Arrows indicate significant
interactions; those mediated by species-level differences are empha-
sized.

model, adding a new fire model, and parameterizing it
for Sierran mixed-conifer forests. As a forest ecosys-
tem model, the gap model couples several modules,
only some of which are important for any given ap-
plication (Figure 1). For the Sierra Nevada, soil mois-
ture and fire are clearly dominant components of the
system. The fire model, which couples forest dynam-
ics, climate, and fire, is described elsewhere (Miller
and Urban 1999a–c). Litter decomposition/nutrient
cycling is tied to the fire model as the same data struc-
tures are used as decay classes and fuel types. The
light regime is coupled to the water balance through
interception and the influence of leaf area on transpi-
rational demand. We have not invoked seed dispersal
for this application because it is a distraction from our
primary focus on temperature and soil moisture gradi-
ents. In this paper we focus on the soil water balance
as it drives much of the rest of the model.

The model simulates a forest stand as a rectangu-
lar grid of ‘tree-sized’ cells (here, 15× 15 m). Each
grid cell corresponds to a conventional gap model
plot, with the extension that trees may shade (or be
shaded by) trees on nearby cells. The model assumes
horizontal homogeneity at the scale of the cell, re-
taining the simplifying assumption that has helped
make gap models so successful as a class of mod-
els (see Botkin et al. 1972, Botkin 1993, Shugart
1984). The model simulates a slope facet as the fun-
damental analysis unit in mountainous terrain (Daly
et al. 1994). The modeled grid has a user-specified
elevation, slope, and aspect. Climate parameters (min-
imum and maximum temperature; precipitation) are
internally adjusted for elevation and topography using
locally regressed lapse rates and radiation is predicted
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and adjusted for topography (see below). Reflecting its
topographically-adjusted implementation, we refer to
this version as the FACET Model, or simply FM. Here
we document the benchmark edition of the model,
version FM 97.5.

The light regime
The crux of the light regime is a leaf area profile de-
fined for each cell of the grid. This array is constructed
by estimating total leaf area for each tree on the plot,
and distributing this leaf area along each tree’s live
crown (after Leemans and Prentice 1987).

We predict tree height from diameter at breast
height (1.37 m, dbh):

H = Hmax

(
1− eh1D

)h2
, (1)

whereD is dbh (cm),Hmax is maximum height (m),
and h1 and h2 are fitted shape coefficients. Leaf
area is predicted from sapwood cross-sectional area
at the base of the tree’s live crown (Waring et al.
1982, Waring and Schlesinger 1985). We use taper
equations (Kozak et al. 1969) to predict diameter at
base of crown, predict sapwood width from diameter
(Lassen and Okkonen 1969), and estimate sapwood
area by differencing off the heartwood; leaf area (m2)
is then predicted from a sapwood: leaf area ratio for
that species. Leaf area is distributed uniformly over
1-m height intervals from treetop down to a species-
specific light compensation point; foliage below this
point is assumed to be lost permanently. Thus, trees of
the same size and species may have different foliage
profiles depending on the number and sizes of other
trees shading them. The model aggregates the foliage
profiles of each tree on each plot each simulation year.

The leaf area profile is used to estimate the light
profile for each position (grid row, column, and height)
within the modeled stand. FM does this by partition-
ing light into direct-beam and diffuse-sky components,
and ‘sampling’ the forest canopy to estimate each
component (Urban and Shugart 1992). This sam-
pling is accomplished by constructing diagonal leaf
area profiles by ‘looking through’ the vertical leaf-
area array at a specified angle and direction. The
direct-beam component is estimated by constructing
a diagonal profile to the south, with a look angle de-
rived from mean solar inclination angle as integrated
over the growing season (Bonan 1989). The diffuse-
sky component is estimated with multiple samples of
the sky, by constructing diagonal profiles at various
look angles and directions. Light impinging through

the diagonal leaf area profile is attenuated according
to the Beer–Lambert Law:

Sh = S0e
−k6Lh, (2)

whereSh is light at heighth, S0 is light at the top of
the canopy,6Lh is leaf area index (m2 m−2) above
heighth, andk is an extinction coefficient here set to
0.4 (Jarvis and Leverenz 1983). Total light impinging
at any point within the stand (row, column, height) is
the sum of direct-beam and diffuse radiation.

FM predicts incident radiation S0 for the grid by
estimating net solar radiation for a horizontal sur-
face and adjusting this for slope and aspect. In this,
mean monthly net radiation (Ly day−1) is predicted
from latitude, topographic position, and cloudiness
(Nikolov and Zeller 1992). Horizontal-surface radia-
tion is adjusted for slope and aspect using geometric
‘tilt factors’ (Bonan 1989). Because the model grid
is draped over the specified slope facet, the light
regime is adjusted doubly for slope. First, a south-
facing slope receives more incident radiation than a
corresponding north-facing slope at this latitude. Sec-
ondly, because the grid cells are draped over a slope,
on a steep north slope the path of light through the
canopy is extremely long, while on a south slope the
path from lower-canopy to open sky is comparatively
short; light penetrates more deeply into the canopy on
a south-facing slope.

The soil moisture regime
The soil water submodel simulates the soil water bal-
ance for a multi-layer soil. The gridded forest is
underlain by a soils map which assigns a soil type to
each cell. Each soil type is defined by the depth and
water-holding capacity for each soil layer. Soil water
dynamics are influenced by the canopy through inter-
ception and transpiration, and so even for the same soil
type the soil water balance may vary uniquely for each
grid cell in response to changing leaf area.

FM simulates soil moisture dynamics as the inter-
action of water demand and water supply Demand is
based on temperature and radiation, and so varies with
elevation and topographic position. Water supply de-
pends on water inputs and water storage. Inputs may
be through precipitation or snowmelt, and storage is
a function of soil depth and texture. Water-holding
capacity of each soil layer is indexed by its con-
tent at field capacity (−0.01 MPa) and wilting point
(−1.5 MPa). The uppermost layer in the soil profile
is the litter layer, which changes dynamically through
litterfall and decomposition and so the litter layer has
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a water-holding capacity that varies dynamically as its
depth varies.

The model works on a monthly timestep in that
it uses monthly data for average minimum and max-
imum temperatures and total monthly precipitation.
Precipitation events are simulated on a daily timestep
(see below). Some processes are treated differently
for months in the growing season as compared to the
nongrowing season; the beginning and ending months
of the growing season are estimated from a threshold
minimum temperature. In terms of processing logic,
the model predicts potential evapotranspiration (PET),
and attempts to meet this demand via precipitation
(including interception). If precipitation is less than
PET, soil water storage is drawn down to meet wa-
ter demand as long as soil water is available. After
soil water is exhausted, unmet demand accrues as soil
water deficit and actual evapotranspiration (AET) is
less than PET. That is, climatic moisture deficit is PET
minus AET.

FM uses a Priestley-Taylor estimate of potential
evapotranspiration as implemented by Bonan (1989).
PET is partitioned into two components. Active leaf
area on a plot determines the proportion of PET
expected as transpiration, estimated as:

Et = 1− e−kL, (3)

whereL is leaf area index (m2 m−2) during the grow-
ing season, otherwise 0.0. Here, the coefficientk is set
to 0.7 (Saugier and Katerji 1991). The model attempts
to meet the remainder of PET (1−Et ) via surface evap-
oration. Surface evaporation comes from the litter/duff
layer first, with unmet demand drawn from the top
mineral soil layer.

Transpiration, likewise, is drawn first from the top
layers, but may also be drawn from deeper layers.
In the algorithm, water is drawn off from the top
layers downward, with unmet demand drawn from in-
creasingly deeper layers in the soil as the soil dries.
Likewise, soil water is recharged from the top down.
In the summer-dry Sierra Nevada, this means that
the soil dries down as the summer progresses, and is
recharged in late fall when the rains resume.

Water inputs are from precipitation and snowmelt.
The model uses a daily timestep to generate stochastic
precipitation events, with event sizes and frequen-
cies estimated from long-term data. Precipitation is
partitioned into rainversussnow as a function of tem-
perature (Aber and Federer 1992), using a function
calibrated from local data. Snow is accumulated as wa-
ter equivalents (cm) during the winter and then melted

in springtime using a simple melt rate specified in cm
◦C−1 day−1 (Running and Coughlan 1988).

During the growing season, interception is a func-
tion of leaf surface area on the plot, estimated by
adjusting each grid cell’s leaf area on a monthly ba-
sis. In the off season, deciduous species contribute an
‘effective leaf area’ to interception to represent woody
surface area of branches and stems (Whittaker and
Woodwell 1967); evergreen trees contribute intercept-
ing leaf area year-round. The fraction of precipitation
intercepted is a function of intercepting surface area:

I = 0.02L+ 0.02LP, (4)

whereL is leaf area index andP is precipitation. Here,
the first term is canopy storage and the latter term
specifies an increasing proportion of total precipitation
intercepted with increasing LAI. The estimate is set
to 0.0 if P = 0 and to total precipitation ifI > P .
This approach is consistent with empirical summaries
(Helvey and Patric 1965, Zinke 1967, Helvey 1971,
Dingman 1994) but ensures that interception varies
dynamically with canopy development. The model
does not deal with the complexities of within-storm
dynamics of interception such as those due to satura-
tion of the leaf surface or within-storm evaporation.
Water lost to interception is subtracted from PET.

The soil water balance is a modified ‘tipping
bucket’ algorithm. Stochastic precipitation is gen-
erated, some is intercepted, and throughfall plus
snowmelt comprise water input. First, a ‘fast-flow
fraction’ of water input representing macropore flow
flows through the soil and is lost as deep percola-
tion. Next, the water input (rain plus snowmelt) is
added to the top (litter) layer, and evaporative demand
is removed if possible. Stored water is drawn down
when water input is less than PET in any layer. A
simple linear drawdown curve is invoked when soil
water content is less than a critical water content (Sell-
ers 1965). Unmet transpirational demand is carried to
deeper soil layers, while evaporative demand is re-
stricted to the litter and top soil layer. Water in excess
of the bottom-layer field capacity, if any, is lost as deep
percolation or subsurface flow. There is no lateral hy-
drologic flow between plots (grid cells) in this version
of the model.

The model tallies two drought-day indices to sum-
marize the soil water balance. A drought-day is a day
during the growing season for which soil water is at
or below wilting point. Drought-days are accrued on a
daily basis throughout the growing season. The first in-
dex is integrated over the upper soil layers (top 20 cm)
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to provide a topsoil moisture index. The second in-
dex is integrated over the fine-root density distribution
in the entire profile to provide a whole-profile index.
Following Bonan (1989), we model the distribution of
fine roots as triangular with depth, a simple approach
that places∼80% of fine roots in the upper 30 cm
of a 1-m soil. The topsoil index is used to constrain
seedling establishment, while the whole-profile index
is used as a constraint on diameter growth rates of
established trees.

The soil water routine is coupled indirectly to
canopy development; trees do not actually ‘transpire’
water. Open canopies lead to dry-down of the upper-
most layer due to increased surface evaporation. At
the same time, stand thinning (including gap-creating
mortality events) relieves the transpirational demand
on the soil profile, and reduced transpiration may more
than compensate for increased surface evaporation:
topsoil moisture may show a net increase following
the creation of a gap. The balance between wetting
and drying in the topsoil (i.e., the top 20 cm) depends
very much on the balance between surface evaporation
(which increases in a gap) and subsurface transpiration
(which decreases in a gap). This routine is thus simple
yet quite responsive to canopy development.

Tree demographics
Although our emphasis here is on the physical tem-
plate of forest pattern, the model couples physical
routines to demographic processes and so we can-
not avoid presenting these biotic routines here. Our
intention here is to provide a conceptual overview, de-
ferring a more detailed presentation to a subsequent
companion paper.

The model simulates the processes of seedling es-
tablishment, annual diameter growth, and mortality for
each tree on each cell of the simulated grid. These
processes are simulated with a common logic of spec-
ifying the maximum potential a tree might achieve
and then reducing this potential to reflect suboptimal
environmental conditions. Simple scaling functions
are used to describe these environmental responses
(Figure 2; Urban and Shugart 1992).

Establishment. Seedling establishment is strongly
keyed to light available at ground level and to the
moisture status of the topsoil. Each species has
a maximum possible establishment rate (seedlings
plot−1 yr−1). Each simulation year, species are ‘fil-
tered’ (sensuHarper 1977) by the environmental re-
sponse scaling functions that reduce the optimum rate.

Figure 2. Species response functions used to scale seedling estab-
lishment rates and diameter growth in relation to (a) available light
as proportion of full sun, (b) soil moisture deficit as drought-days,
(c) relative soil fertility asN supply/demand, and (d) temperature
as growing degree-days. Curves are examples of contrasting species
tolerances; actual values vary by species (temperature, drought) or
tolerance class (light, nutrients) (see Urban and Shugart 1992, for
details).

Filtered seedlings are then ‘planted’ as a cohort of
seedlings. These cohorts are tracked through a number
of lag years defined as the minimum time it takes a
species to reach 2.5 cm dbh, and then established as
trees.

Growth. Tree growth is modeled deterministically
via a function that describes the maximum poten-
tial diameter increment that could be achieved by a
tree of a given species and size under optimal envi-
ronmental conditions. The optimal growth increment
is further reduced to reflect shading, soil-moisture
deficit, low soil fertility (we simulate only nitrogen),
or low temperature. The effect of shading is modeled
by integrating the shade response function over a tree’s
canopy. Soil moisture affects tree growth by slowing
growth as a species-specific maximum drought-day in-
dex in approached. Nutrient response is simulated in
terms of N supply and demand for the plot. N supply is
estimated as that N mineralized by the respiration of C
in litter and woody debris, as implied by the C:N ratio
of these tissues (after Parton et al. 1987, with some for-
mulations taken directly from the CENTURY model).
The N demand term is estimated allometrically for
all trees on the plot, based on expected biomass in-
crements and tissue chemistry for foliage, fine roots,
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and wood for each species. The temperature response
in this model is a departure from previous gap mod-
els, which have been much criticized for the way they
model temperature effects on tree growth (Weinstein
1991, Bonan and Sirois 1992, Urban et al. 1993,
Loehle and LeBlanc 1996). Here we assume that there
exists a cold temperature at which species response
is low for physiological reasons. Conversely, at this
latitude the apparent response to high temperature is
largely expressed through temperature’s effect on the
water balance – masking any direct effect on tree phys-
iology Thus, we use a one-sided response curve that
reduces performance at low temperatures but is inoper-
ative at high temperatures. This approach is consistent
with studies of tree-rings in our study area, where
trees at high elevations show stronger correlations
with long-term variation in temperature, while tree-
ring chronologies at low elevations are more correlated
with variation in precipitation (L. Graumlich, Labo-
ratory of Tree-Ring Research, University of Arizona,
pers. comm.).

Environmental factors interact to constrain tree
growth. We assume an interaction between above- and
below-ground constraints, but assume that moisture
and nutrients are so tightly interrelated as to be insep-
arable for our purposes. Thus, the overall constraint
is the product of the temperature, light, and a below-
ground factor, where the below-ground factor is the
minimum of moisture or nutrients.

Mortality. Trees may die for three reasons in the
model. There is a low ambient rate of purely stochas-
tic mortality that is estimated from expected species
longevity; this annual probability is age- and size-
independent and for these species is on the order of
∼1% per year. A second cause of mortality is lack of
vigor, which is invoked when a tree fails to achieve
10% of its optimal growth for more than two succes-
sive years. Under these conditions a tree has a annual
mortality probability corresponding to an expectation
that it might survive 10 years under loss of vigor. Note
that this approach, invoked similarly for all species,
still results in very different mortality schedules for
species that vary in their environmental tolerances. A
third source of mortality is through fire, in which the
probability of fire mortality is predicted from fireline
intensity and tree characteristics (Miller and Urban
1999a).

Table 2. Lapse rates (◦C 1000 m−1) for monthly
mean minimum and maximum daily temperature
and mean monthly precipitation (cm 1000 m−1), as
regressed1 from seven meteorological stations2 in
Sequoia-Kings Canyon National Park.

Month Tmin Tmax Ppt

January 5.71 5.40 3.93

February 6.49 5.39 5.08

March 6.66 6.75 4.48

April 6.51 7.29 1.33

May 6.42 8.06 0.78

June 6.84 7.98 0.21

July 6.88 7.68 0.42

August 6.67 7.76 0.19

September 6.90 7.99 1.12

October 6.42 7.32 1.16

November 5.52 6.39 3.06

December 5.34 5.68 4.11

1Regression isT = b0-b1E, whereE is elevation
(m) andT is mean monthly temperature (◦C). All
regressions are significant atp < 0.0001.
2Sites (with elevation, m) are: Visalia (100), Or-
ange Cove (132), Lemon Cove (158), Ash Mountain
(526), Giant Forest (1957), Grant Grove (2031), and
Tyndall Creek (3298).

Model parameterization

Implementation of the model requires estimates for
two primary sets of parameters, describing the phys-
ical site and the local tree species. Site parameters
consist of climate and soils data, while species pa-
rameters include life-history traits, environmental re-
sponses, and demographic rates. A third, and optional,
set of parameters for the fire submodel is required only
if fires are invoked.

Site parameters. We used data from 7 meteorologi-
cal stations in the Park to regress lapse rates for mean
daily minimum and maximum temperature for each
month and for total monthly precipitation (Table 2).
For our sites, the precipitation lapse is truncated at an
elevation of 2000 m, above which there is no further
increase in precipitation. The fraction falling as snow
is predicted from temperature, and snow is adjusted
for gauge bias (Stephenson 1988).

Although the Park commissioned a detailed soils
map for one region of our study area, we generally
lack soils data of sufficient resolution to assign hy-
draulic parameters with confidence. Instead, we used
the existing survey to develop a set of soils that re-
flect the range of soil types in the Park, and then
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varied soil type and depth to simulate a wide variety
of sites. For soils of different texture, we estimated
water-holding capacity by regression on sand, silt, and
clay fractions (Cosby et al. 1984). Most of the soils in
the mid-elevation mixed-conifer zone are sandy loams
of rather similar parent material and texture, and so
we concentrated on depth as the primary variable in
our simulations. At high elevations cryogenic soils
are more typical, but as we have concentrated on the
mixed-conifer zone we do not explore these other soil
groups here.

Species parameters.We collated species informa-
tion and data from a variety of local sources, expand-
ing our search regionally when local sources were
insufficient (Table 1). We used vegetation data col-
lected by Stephenson (1988) and additional plot data
collected as part of the Park’s Natural Resource In-
ventory program (Graber et al. 1993). These samples
are 0.1-ha quadrats distributed over much of the Park
(randomly by Stephenson,N = 228; stratified by
Graber et al.,N = 600). As some of these quadrats
located in nonforest vegetation were not used, our total
pooled sample size was 584 quadrats. Each quadrat
included tallies of each tree by species and diameter,
as well as selected site data; slope, aspect, elevation,
and surface rockiness are common to both data sets.
Tree height allometries were estimated by regression,
using height-diameter data collected in the adjacent
National Forest by Forest Service personnel (J. Verner,
USFS PSW Research Station, pers. comm. of unpub-
lished data). Taper equations were computed from data
maintained by the USDA Forest Service (S. Garman,
Forest Sciences Lab, Corvallis, Oregon; unpublished
data). Sapwood:leaf area ratios were generally un-
available for our species and so we used estimates
from similar species (Waring et al. 1982, Waring and
Schlesinger 1985). Similarly, we substituted parame-
ters for common species when we lacked data for
less common species (e.g., we used Ponderosa pine
allometries for Jeffrey pine). Growth rates were esti-
mated to fit tree ring data collected within the Park (D.
Urban, unpublished data).

For some parameters the model is quite data-
intensive (e.g., height-diameter allometries are based
on more than 1000 trees for some species). In other
cases we had a strong consensus in the literature as
to rank differences among species (Minore 1979), but
no specific quantitative information for parameter es-
timation (e.g., we knew relative drought tolerance but
not actual drought-days for species). We performed an

initial calibration of the model using minimum degree-
days, maximum drought-days, and species growth
rate. We began by assigning drought tolerances cor-
responding to the drought-day indices simulated for
sites at the lowest elevation where each species oc-
curred (its driest site), and minimum degree-day limits
corresponding to the maximum elevation for each
species (its coolest site). We then freed these parame-
ters in model calibration while forcing the estimates
to remain consistent with accepted rank differences.
Because species performance in a gap model depends
on how each species performs relative to other species
in the model, adjusting any species parameter also
can alter the performance of all other species; and
so model calibration is an iterative process that can
quickly devolve into artless tinkering. Because we
are still collecting demographic data to be used in a
more rigorous model calibration, we have not pursued
model calibration further at this point (see below).

Simulations

We performed two sorts of simulations. Forinten-
sive explorations of the model, we simulated single
sites and scrutinized detailed output from the model.
In these cases we also used a stand-alone version of
the soil moisture model to provide month-by-month
and soil layer-by-layer information on the water bal-
ance. Forextensiveexplorations with the model, we
simulated large numbers of cases in Monte Carlo
fashion and analyzed summary statistics of model per-
formance across a broad range of site conditions. In
these latter, extensive explorations, we used a factor-
ial design to stratify simulations across combinations
of the primary site variables: elevation, slope, aspect,
and soil type. We simulated 300 10× 10-cell model
grids (2.25-ha stands) with elevation, slope, and aspect
values drawn randomly from statistical distributions
estimated from a digital elevation model for the Park
(elevation and slope, gaussian; aspect, uniform). Soil
depths were varied uniformly over values estimated
from the soil survey and from field data (P. Halpin,
unpublished data). Each simulation was for 50–250 yr,
randomly distributed to provide a variety of succes-
sional ages (gaussian, mean age=150 yr). We used a
distributed queuing system to perform the simulations
(Urban et al., 1999).

Model verification

The radiation model performs quite well for a wide
range of sites for which we have data. For a set of
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Figure 3. Solar radiation (direct+ diffuse) as predicted with sub-
program SOLAR in FM 97.5. (a) Verification of the model against
data from 37 stations throughout North America (Mueller 1982).
(b) Topographic patterns in radiation for a site at 2000 m in Sequoia
National Park, relative to radiation for a horizontal surface.

37 stations across North America (Mueller 1982), the
model reproduces monthly radiation values with anr2

of 0.94 (Figure 3a). Because these are mostly primary
meteorological stations (e.g., airports), we interpreted
them as representing incident (above-canopy) radia-
tion on horizontal surfaces and simulated them accord-
ingly. Topographic exposure has a profound influence
on radiation, with incident radiation levels relative to
a horizontal surface varying with aspect for steeper
slopes (Figure 3b).

We verified the soil water model qualitatively.
Arkley (1981) and Anderson et al. (1995) measured
soil moisture at various depths throughout a grow-
ing season at sites similar to mid-elevations in our
study area. Their data show a substantial soil-moisture
deficit that develops during the summer, with mois-
ture contents near wilting point extending quite deeply
(>2 m) into the soil profile and water potentials less
than −2.0 MPa in the topsoil. These patterns are

Table 3. Distribution of tree species along elevation gradient
in Sequoia National Park, from field data and as simulated
using the FACET model. Standard deviation in parenthe-
ses. Asterisks indicates a significant difference according to
permutation tests.1

Species Basal Area Mean Elevation4

Data2 Model3 Data Model

Abies concolor 14.43 12.45 2047 2259∗∗
(21.89) (18.33) (196) (216)

Abies magnifica 11.02 9.70 2574 2732∗∗
(25.78) (17.71) (225) (169)

Calocedrus decurrens 2.23 2.92 1826 1864

(5.94) (6.86) (218) (215)

Pinus contorta 2.92 6.03∗∗ 2675 299∗∗
(10.02) (13.25) (141) (234)

Pinus jeffreyii 1.28 1.99∗ 2137 2185

(4.56) (4.85) (177) (327)

Pinus lambertiana 3.10 2.99 2019 2201∗∗
(8.18) (7.94) (157) (147)

Pinus monticola 1.00 1.97∗ 2816 2975∗∗
(4.91) (4.92) (189) (216)

Pinus ponderosa 1.83 3.87 1749 1838∗∗
(6.81) (10.27) (190) (162)

Quercus kellogii 0.93 0.30 1694 1685

(3.11) (1.03) (227) (320)

1Significance as 2-tailed test on 1000 random permutations
of the plot labels (‘data’ or ‘model’; see text).∗p < 0.05;
∗∗p < 0.01.
2Estimated from 280 0.1-ha sample plots from Kaweah Basin
in Sequoia National Park (Stephenson 1988, Graber et al.
1993).
3Estimated from 300 simulated stands stratified across eleva-
tion, slope, aspect, and soil depth as represented in Kaweah
Basin, at ages ranging from 50–250 yr.
4Mean elevation is weighted by relative basal area per sample
(see text).

reproduced by our simulations. Ziemer (1964) also
described patterns in soil moisture at depth in Sierran
mixed conifer forests, emphasizing trends in soil mois-
ture under clear-cuts as compared to intact forests. His
figures show a relation between soil moisture draw-
down and forest regrowth that is consistent with the
relationship between transpiration and LAI simulated
in the model.

Tree species distributions were verified using plot-
level summary data derived from 280 sample quadrats
distributed within the Kaweah Basin, a∼90,000-ha
basin that comprises the west slope Sequoia National
Park. We limited the data geographically because rain
shadow effects east of the Great Western Divide gen-
erate a moisture regime that is not well represented
by available climate data. We summarized basal area
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(m2 ha−1) for 9 common species for the field data and
the simulated plots (Table 3). We computed the differ-
ence in these mean scores, then permuted the labels
on the plots (either ‘data’ or ‘model’) and tested the
hypothesis that the labelling didn’t matter – that is, that
the modeled and field plots were indistinguishable.
Lodgepole pine, western white pine, and Ponderosa
pine are somewhat overpredicted by the model while
black oak is somewhat underpredicted. To test simu-
lated species response to elevation, we compared the
model-generated forests to field data by computing the
abundance-weighted mean elevation for speciesj, Ej :

Ej =
n∑
i=1

bji · ei
6bj

(5)

wherebji is basal area (m2 ha−1) for speciesj on plot
i, 6bj is total basal area for speciesj over alln plots,
andei is elevation of ploti. In fact, the model does not
perform very well under this test: most species showed
a significantly different mean elevation between model
and data (Table 3). Despite this, the model does seem
to capture the gross pattern of species response to the
elevation gradient (Figure 4). We are reluctant to in-
terpret discrepancies between modeled and empirical
species abundances for two reasons. First, we lack in-
formation on the detailed site conditions (especially
soil depth), stand age, and site history of the field
samples. More importantly, we are still collecting de-
mographic data that will be used to better calibrate
the model. For our purpose of exploring the physi-
cal template, it is sufficient (indeed, necessary) that
the model simulates canopies appropriate for the soil
water model as it uses these to model interception
and evapotranspiration. Similarly, the model generates
fuel loads and litter accumulation rates consistent with
measured values and appropriate for the fire model
(Miller and Urban 1999a). Thus, we are content to
note that with minimal calibration of the model using
local field data, the simulator provides an adequate
representation of these forests across a wide range of
site conditions, but the details of species distributions
can still be improved.

Model sensitivity analysis

In formal model sensitivity analysis (e.g., Gardner
and Trabalka 1985, Haefner 1996) one systematically
varies all model parameters by 10% of their nominal or
mean values, and then regresses a selected output vari-
able against the input variables in a multiple regres-
sion format. A parameter’s sensitivity is its regression

slope, i.e., the amount of change in the output variable
associated with a small change in the input variable.
In our case, this approach is not very satisfying for
two reasons. First, temperature and precipitation both
covary with elevation and so are collinear over most
of their distributions; this renders the multiple regres-
sion somewhat pathological because either variable,
once entered into the regression, masks the effect of
the other variable. More importantly, the conventional
sensitivity analysis does not clearly resolve instances
where the sensitivity of a variable varies considerably
over its domain. In this case, we expect the model’s
sensitivity to temperature or precipitation to vary with
elevation.

To assess the sensitivity of the model to its physical
drivers, we generated 1500 combinations of eleva-
tion, slope, aspect, and soil depth and simulated these
cases using the stand-alone version of the soil water
model. We then simulated each of these cases again,
manually adjusting temperature, precipitation, and soil
depth by 10% of the baseline values. This resulted in
3 new sets of 3000 runs each, a total of 10,500 simula-
tions including the baseline cases. We indexed model
sensitivity to each input variable by differencing the
drought-day index for the+10% as compared to the
−10% case, yielding an index ofδ (drought-days).

Spatial scaling of the physical template

We characterized the spatial scale of the physical
template over three spatial extents. At the largest
extent, we sampled terrain-based variables in a ge-
ographic information system (GIS) of the Kaweah
Basin (∼90,000 ha), using a 30-m resolution DEM.
From the DEM, we extracted elevation and aspect. We
then transformed aspect (Beers et al.1966):

A′ = cos(45− A)+ 1, (6)

whereA is aspect in degrees. This transformation takes
on maximum and minimum values along a northeast-
southwest axis. We also computed a topographic
convergence index (TCI) based on terrain:

TCI = ln

(
a

tanβ

)
, (7)

wherea is upslope contributing area andβ is local
slope angle (Moore et al. 1990, Wolock and McCabe
1995). The index takes on high values in coves and
other convergence zones, and low values on exces-
sively drained ridges or outcrops. We sampled the
DEM using random clusters of 3 points within a 100-
m cluster radius. Excluding points that fell within the
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Figure 4. Species response to the elevation gradient in Kaweah Basin in Sequoia National Park, from 280 0.01-ha sample quadrats (filled
circles) and as simulated for 300 slope facets defined by elevation, slope, aspect, and soil depth (open diamonds).

same 30-m cell or outside the basin boundaries, this
yielded 20,903 samples (∼0.015% of the area) for
geostatistical analysis of these terrain-based variables.
We have no useful soils data over this large extent.

Over a smaller spatial extent, we analyzed Log
Creek Watershed, a 50-ha watershed within the
Kaweah Basin. The entire watershed was surveyed to
create a digital elevation model with 5-m horizontal
resolution (cell size). We collected the terrain-based
variables by extracting elevation and its derived as-
pect and TCI values for every cell in the GIS grid,
yielding 1075 points. Our scaling analysis for soil
depth in Log Creek watershed was based on actual
field measurements, which Halpin (1995) collected at
60-m intervals throughout the watershed (N = 154).
Soil depth was measured with an auger to a maximum
depth of 4 m.

Over a still smaller extent, we analyzed a 2.5-ha
mixed-conifer reference stand within Log Creek Wa-
tershed. The stand was surveyed to create a DEM with
50-cm horizontal resolution. We extracted the DEM,
aspect, and TCI from GIS coverages to yield 1750
sample points. For soil depth, Halpin sampled a 1-ha

section of this stand at 5-m intervals, yielding 100 field
measurements of soil depth.

These data thus provide measures of the physical
variables affecting the water balance at three spatial
scales ranging over orders of magnitude in extent and
with corresponding changes in grain (resolution). We
use elevation as a proxy for temperature and precipita-
tion. Transformed aspect is a proxy for radiation load,
as it scales aspect relative to maximum afternoon sun.
We included TCI because of its recognized relation-
ship with soil moisture as governed by local drainage
(Yeakley et al. 1998) even though our model, as a
point model, does not simulate lateral hydrologic flow.
Soil depth is a primary variable affecting water storage
in this system. Thus, we analyzed the scaling of two
demand terms (temperature and radiation) and three
supply terms (precipitation, drainage, and storage).
We assessed the characteristic scaling of these vari-
ables by computing semivariograms (Legendre and
Fortin 1989). In each case, the distance interval (lag)
was set to a value twice the spatial grain (cell size)
of the measured variable and total distances were ex-
tended to half the minimum dimension of the study
area.
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Figure 5. The physical template in Sequoia National Park. (a)
Growing degree-days and duration of growing season. (b) Total an-
nual precipitation and snow fraction. (c) Drought-day indices for
topsoil and entire soil profile. Each point is a 100-year average
for a site defined by its elevation, slope, aspect, and soil depth
(N = 1500).

Results

We present simulation results by first characterizing
the physical template of the study area in terms of the
components of the water balance. We then examine
these components in terms of their local sensitivity in
the model and their characteristic spatial scaling.

The physical template as environmental gradient

Elevation dictates much of the pattern in the physi-
cal template as represented in Sierran landscapes. As
elevation increases, monthly temperatures decrease
linearly while the integrated growing-season heat sum
(degree-days) decreases in a moderately nonlinear
fashion (Figure 5a). At low elevations the growing
season is essentially year-round insofar as temperature
is concerned; by contrast, cold temperatures severely
limit the growing season at the highest elevations that
support trees in this area.

Precipitation increases linearly with elevation up
to an elevation of 2000 m, above which it remains
nearly constant. But because of the correction for
gauge bias applied to the snow fraction, total precip-
itation continues to increase slightly above 2000 m
(Figure 5b). More importantly, precipitation switches
from predominantly rain at low elevations to snow at
high elevations, with the split being roughly equal at
the mid-elevations.

These physical variables interact to generate a soil
moisture balance that varies in a nonlinear fashion
with increasing elevation (Figure 5c). At low eleva-
tions precipitation falls as rain and is lost as deep
percolation or runoff once the soil is saturated. High
evaporative demand during the growing season pre-
vents recharge of the deeper soil layers, and the veg-
etation grades from woodland to grassland where soil
moisture is inadequate to sustain trees (seen as a lower
drought-day index for the topsoil as compared to the
entire soil profile at the lowest elevations in Figure 5c;
at all other elevations the whole-soil drought index is
lower than that of the topsoil). At mid-elevations the
precipitation shifts to snow, and where the snowpack
persists long enough to provide meltwater into the
summer, the drought-day index decreases steeply. At
high elevations, soil moisture is adequate for most of
the year because cold temperatures provide such low
evaporative demand that soil water is not exhausted;
higher precipitation at these elevations is effectively
moot, given the low temperatures. (We should note,
however, that extremely shallow or rocky soils can
exhibit droughtiness even at these high elevations.)

Model sensitivity

The model shows quite marked local sensitivity to
slight variation in the driving variables, and as ex-
pected these sensitivities vary across the elevation
gradient. The model’s sensitivity to temperature is
strongly nonlinear with a maximum sensitivity at el-
evations near 2700 m, above the upper ecotone of the
mixed-conifer zone (Figure 6a). The model shows a
similar sensitivity to precipitation at these elevations,
but also exhibits a second zone of high local sensitivity
at low elevations (Figure 6b). It should be noted that
because of the temperature effect on the proportion
of rain versussnow, the sensitivity at higher eleva-
tions reflects a change in the snowpack, while the
lower-elevation sensitivity is to rain.

Sensitivity to soil depth varies with elevation as
well as with soil depth itself (Figure 6c). In the former
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Figure 6. Local sensitivity of the soil water model to 10% variation
in (a) temperature relative to elevation (b) precipitation relative to
elevation, and (c) soil depth relative to elevation and (c) soil depth.

case, this reflects the relationship between evapora-
tive demand and elevation as driven by temperature;
high-elevation soils are largely insensitive to soil depth
because water is rarely limiting. In the latter case,
the effect is due to a threshold-like behavior in the
soil water balance. Shallow soils that cannot meet
growing-season evaporative demand are insensitive to
slight variation in soil depth – they remain too shallow.
By contrast, soils that are sufficiently deep to meet
higher demand do respond to variation in depth. The
depth at which this threshold occurs must vary with
elevation because demand itself varies with elevation.

The sensitivity of the physical variables can be
compared crudely in terms of the magnitude of change
in drought-days they elicit in the analysis (the sign of
this difference is arbitrary), which shows that the water
balance can be quite responsive to any of these vari-
ables (they have similar maximumδ’s, as much as∼40
drought-days). Overall, temperature shows a slightly
higher mean sensitivity (∼13 drought-days) than pre-

cipitation (∼7 drought-days) or soil depth (∼11). But
this average assessment detracts from the more impor-
tant result that these variables are most responsive in
particular locations.

Scaling of the physical template

The features of interest in a variogram are its sill (as-
ymptotic value), range (the distance at which the sill
is reached), and nugget (Y-intercept, reflecting varia-
tion finer-scale than the minimum lag distance). We
present variograms with semivariance normalized by
simple variance, so that the expected value for the
sill is 1.0. Elevation exhibits the signature variogram
of a simple gradient, with semivariance increasing
monotonically at increasing lag distances (Figure 7).
That is, there is no obvious grain to elevation within
the scope of our study area. This is true at all three
scales. Directional variograms (not shown) are simi-
larly linear but with different slopes in different direc-
tions, reflecting the anisotropy in elevation in the study
area as dictated by the N-S trending mountain range
(Halpin 1995).

Other terrain-based variables are comparatively
finer-scaled than elevation. At the basin scale, aspect
approaches its sill value at a range of 800–1000 m,
while TCI has a slightly smaller range on the order of
200 m (Figure 7a). Within the small watershed, both
variables approach their sills at ranges of∼100 m,
and soil depth shows a scaling similar to slope aspect
(Figure 7b).

Within the spatially restricted domain of the forest
stand, both aspect and TCI show large nugget vari-
ances indicating substantial variation at scales finer
than the resolution of the analysis (Figure 7c). TCI
appears to reach a sill at a range of 10–20 m, reflecting
microtopography. Aspect does not reach a sill within
this stand. Soil depth shows a variogram with a very
large nugget variance and no obvious sill.

Presenting the variograms normalized by simple
variance allows us to overlay the graphs for compari-
son but masks the change in total variance encountered
as a function of scale. In fact, one would expect to
encounter a range of variation at the basin, water-
shed, and stand scale that would reflect the spatial
patterning of each variable. This expectation is met
for elevation, which shows a dramatic decrease in its
standard deviation as estimated at the basin, water-
shed, and stand scales (Table 4). By contrast, this trend
does not hold for aspect, TCI, nor soil depth. Rather,
for each of these variables, higher-resolution measure-
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Figure 7. Spatial scaling, as semivariograms for elevation, aspect
(transformed to a NE–SW axis), topographic convergence, and soil
depth at three scales. (a) The 90,000-ha Kaweah Basin in Sequoia
National Park. Date were sampled from 30-m resolution digital ele-
vation model (N = 20,903) (no soil depth data available). (b) The
50-ha Log Creek Watershed in the Kaweah Basin. Terrain data were
sampled from 5-m resolution digital elevation model (N = 1075).
Soil depth was measured on 60-m interval throughout the water-
shed (N = 154). (c) A 2.5-ha mixed conifer stand in Log Creek
Watershed. Terrain data were sampled from a 50-cm resolution dig-
ital elevation model (N = 1750). Soil depth was measured at 5-m
intervals for a 1-ha central subsection of the stand (N = 100).

ments merely yield finer-scale expressions of the same
variables.

Discussion

The nature of the physical template

The inflection of the drought-day curve (Figure 5c)
corresponds roughly to the position of the mixed
conifer zone in the study area (∼1500–2500 m eleva-
tion). Thus, to a crude approximation we can envision

Table 4. Range of variability in elevation, aspect, topographic
convergence (TCI), and soil depth as estimated at the basin,
watershed, and stand scales. Tabled values are means (standard
deviation) and sample sizes.

Scale Elevation Aspect1 TCI2 Soil

depth3

Kaweah basin 2192.6 m 0.784 6.31

(90,000 ha; 30-m (699.7) (0.683) (1.82) no data

resolution) N = 20,093 20,903 20,903

Log Creek 2245.5 0.472 7.82 168.4 cm

watershed (70.4) (0.457) (1.49) (84.4)

(50 ha; 5-m) N = 1075 1075 1075 154

Mixed conifer 2173.9 0.602 8.60 206.1

stand (8.6) (0.628) (1.89) (50.7)

(2.5 ha; 50-cm) N = 1750 1750 1750 100

1Aspect as transformed assumes values on [0,2], 0=SW, 2=NE,
SE=NW.
2TCI is a dimensionless, log-transformed ratio of area and
slope, typically taking values on a range from near 0 (divergent
ridges) to∼14 (deep coves).
3Soil depth estimated from field measurements at the watershed
and stand scale only.

the mixed-conifer zone as being compressed between
a low-elevation constraint of droughtiness and a high-
elevation boundary defined by cold temperatures.

Stephenson (1990, 1998) found it useful to con-
sider the interactions of water supplyversusdemand
as they effect vegetation distribution. He suggested
that temperature and ‘moisture’ (indexed as topo-
graphic moisture scalars) should be abandoned as the
primary axes of species response in vegetation stud-
ies. He argued that actual evapotranspiration (AET)
and climatic moisture deficit (PET−AET) would be
more relevant to plant response, and he illustrated the
utility of this framework across scales from montane
to continental gradients. This framework is especially
useful for our purposes because it allows us to isolate
specific factors of the physical template as these effect
the water balance.

Our scaling analyses imply that the physical fac-
tors governing water supply operate at three different
spatial scales corresponding to precipitation, drainage,
and soil depth. By contrast, factors governing water
demand (temperature, radiation) vary at two scales
(elevation and microtopography). The characteristic
scaling of the physical template is such that soil
depth is the factor that is most variable over small
spatial extents. At larger extents, variation in micro-
topography (slope, aspect, convergence) plays a more
pronounced role in governing the water balance (al-
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though soil depth continues to vary at these scales).
At the scale of the Sierran range, variation in tem-
perature and precipitation as governed by elevation
and orography come into play as the primary con-
straints on the system. Note, however, at this largest
scale that fine-scale variability cannot be resolved lo-
gistically. Conversely, at small scales temperature and
precipitation are essentially constant and hence con-
tribute little to an explanation of vegetation at these
scales. Thus, explanations of forest pattern must be
scale-specific and must invoke different proximate ex-
planatory variables at different scales (an empirical
demonstration of a general ‘scaling principle’ sug-
gested by Wiens 1989). Importantly, the phenomenon
being explained also varies with scale: temperature
and precipitation provide a suitable explanation for the
location of the mixed conifer zone but offer little to
resolve the local distributions of tree species within
this zone. Likewise, soils and microtopography help
explain species distributions locally but these expla-
nations cannot be extrapolated easily across larger,
landscape-scale gradients.

Stephenson (1990, 1998) also suggested that ac-
knowledging the different effects of supplyversus
demand components of the water balance was im-
portant because tree species respond differentially to
these components. In fact, he argued that supply
and demand represented nearly orthogonal vectors of
response. For example, at middle elevations in the
Kaweah Basin sites on deep soils support white fir
forest; sites that are droughty because of shallow soils
(low water supply) support Jeffrey pine, while sites
that are droughty due to southerly aspect (high evap-
orative demand) instead support ponderosa pine (Fig-
ures 5 and 6 in Stephenson 1998). Although our model
uses different estimates of supply and demand (e.g.,
a Priestley Taylor PET as compared to Stephenson’s
earlier use of the Thornthwaite estimate), it repro-
duces the same qualitative result. To illustrate this, we
graphed the water balance as an elevation gradient in
a space defined by AET and water deficit. A change in
water supply was simulated as a change in water stor-
age, for a 50-cmversusa 150-cm soil. Change in water
demand was illustrated with a change from northern
to southern aspect for a 33% slope. These two vectors
are indeed nearly orthogonal (Figure 8). Again, this
implies that changes in the water balance mediated by
changes in water demand as compared to water sup-
ply could elicit qualitatively different responses in the
vegetation.

Figure 8. Components of the water balance simulated for Kaweah
Basin in Sequoia National Park, as orthogonal vectors influencing
water supply (as soil depth) as compared to water demand (as slope
aspect). Baseline curve represents an elevation gradient at 100-m
intervals, for a 1-m sandy loam on a horizontal surface. Supply and
demand vectors are relative to this baseline at 2000 m. Pale cir-
cles are the range of variability expressed within the Kaweah Basin,
illustrated with the 1500 cases simulated for Figure 5.

Implications under climatic change

This framework has important implications concern-
ing anthropogenic climatic change. Many studies that
have considered possible forest responses to green-
house scenarios have assumed that the environmental
responses of species can be inferred from observed
distributions (e.g., Solomon 1986, Urban et al. 1993;
see Shugart et al. 1992, Smith et al. 1992, Loehle and
LeBlanc 1996, for reviews). Even if this assumption
were true, our results cast serious doubt on the utility
of projecting these inferences to future-climate scenar-
ios. These issues relate to the spatiotemporal scaling
and interactions of the physical variables affecting
species distributions.

First, while temperature and precipitation might
well change under greenhouse scenarios, other factors
affecting the water balance (terrain, soil depth and tex-
ture) will not. Further, there is no reason to believe
that temperature and precipitation might continue to
vary as they do in the current climate. Indeed, al-
though current general circulation models (GCM’s) all
predict warmer temperatures for the study area under
enhanced CO2 scenarios (VEMAP 1995), the models
do not agree on the direction of change in precipita-
tion. While a crude space-for-time substitution would
suggest that greenhouse scenarios would displace the
mixed conifer zone upward perhaps hundreds of me-
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ters, this approximation ignores the interaction of
supply and demand components of the water balance
as represented in the elevation gradient. The mixed
conifer zone is defined by both temperature and pre-
cipitation as these interact through lapse rates affecting
supply (precipitation) and demand (temperature), the
partitioning of snowversusrain, the duration of snow-
pack, and the length of the growing season; all of these
patterns are overlaid on the template of terrain and
soils. Space-for-time substitution cannot embrace the
complexities of these interactions.

The scaling of the physical template also sug-
gests serious caveats when projecting the implications
of anthropogenic climatic change. While it is true
that temperature and precipitation can predict the lo-
cation of the mixed conifer zone, it also is true
that within this zone several species can co-occur
over distances of tens to hundreds of meters, as de-
fined by the spatial scaling of microtopography and
soils. This high degree of spatial heterogeneity within
the mixed conifer zone suggests that under climatic
change, species might move around within that zone
– more mesic species being displaced to deeper soils
or more northerly exposures, more xeric species to
shallower soils or more southerly exposures, with
species abundances changing accordingly. Such com-
paratively fine-scale adjustments would be mediated
by the ability of different species to disperse locally,
a process mediated by seed dispersal distances mea-
sured on the order of tens of meters (Clark et al.
1999) – the same scale as variation in soils and mi-
crotopography, and much finer-scale than climatic
variability.

A model that incorporates the effective compo-
nents of the water balance can provide a robust frame
work and appreciation for the way in which these com-
ponents interact to generate the spatiotemporal pattern
of the physical template of montane systems. This
framework attends the effective components of the en-
vironmental gradient complex and recognizes these at
their characteristic spatiotemporal scales. The model
is thus capable of integrating these processes and con-
straints to their coarse-scale definition of the mixed
conifer zone as well as the finer-scale patterns asso-
ciated with species distributions within this zone. We
believe community and landscape ecology would ben-
efit from a richer appreciation for the components of
environmental gradient complexes and the way they
interact to generate the physical template upon which
all terrestrial processes play out.
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