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Abstract

This document is an introduction to the use of the point-centered quarter method. It briefly
outlines its history, its methodology, and some of the practical issues that inevitably arise with
its use in the field. Additionally this paper shows how data collected using point-centered quarter
method sampling may be used to determine importance values of different species of trees and
describes several methods of estimating plant density and corresponding confidence intervals.

This paper is a significant revision of a 1999 online document intended for student use at Hobart
and William Smith Colleges. A number of individuals elsewhere found the earlier version helpful
and had additional questions that I have tried to address in this revision.

1 Introduction and History

A wide variety of methods have been used to study forest structure parameters such as population density,
basal area, and biomass. While these are sometimes estimated using aerial surveys or photographs, most
studies involve measurement of these characteristics for individual trees using a number of different
sampling methods. These methods fall into two broad categories: plot-based and plot-less. Plot-based
methods begin with one or more plots (quadrats, belts) of known area in which the characteristics of
interest are measured for each plant. In contrast, plot-less methods involve measuring distances for a
random sample of trees, typically along a transect, and recording the characteristics of interest for this
sample. The point-centered quarter method is one such plot-less method.

The advantage to using plot-less methods rather than standard plot-based techniques is that they
tend to be more efficient. Plot-less methods are faster, require less equipment, and may require fewer
workers. However, the main advantage is speed. The question, then, is whether accuracy is sacrificed in
the process.

Stearns (1949) indicated that the point-centered quarter method dates back a least 150 years and
was used by surveyors in the mid-nineteenth century making the first surveys of government land. In
the late 1940s and early 1950s, several articles appeared that described a variety of plot-less methods
and compared them to sampling by quadrats. In particular, Cottam, Curtis, and Hale (1953) compared
the point-centered quarter method to quadrat sampling and derived empirically a formula that could be
used to estimate population density from the distance data collected. Since the current paper is intended
as an introduction to these methods, it is worth reminding ourselves what the goal of these methods is
by recalling part of the introduction to their paper:

As our knowledge of plant communities increases, greater emphasis is being placed on the
methods used to measure the characteristics of these communities. Succeeding decades have
shown a trend toward the use of quantitative methods, with purely descriptive methods
becoming less common. One reason for the use of quantitative techniques is that the resulting
data are not tinged by the subjective bias of the investigator. The results are presumed to
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SECTION 2: Materials and Methods 2

represent the vegetation as it actually exists; any other investigator should be able to employ
the same methods in the same communities and secure approximately the same data.

Under the assumption that trees are distributed randomly throughout the survey site, Morisita (1954)
provided a mathematical proof for the formula that Cottam, Curtis, and Hale (1953) had derived empir-
ically for the estimation of population density using the point-centered quarter method. In other words,
the point-centered quarter method could, in fact, be used to obtain accurate estimates of population den-
sities with the advantage that the point-centered quarter method data could be collected more quickly
than quadrat data. Subsequently, Cottam and Curtis (1956) provided a more detailed comparison of
the point-centered quarter method and three other plot-less methods (the closest individual, the nearest
neighbor, and the random pairs methods). Their conclusion was:

The quarter method gives the least variable results for distance determinations, provides
more data per sampling point, and is the least susceptible to subjective bias.. . .

It is the opinion of the authors that the quarter method is, in most respects, superior to the
other distance methods studied, and its use is recommended.

Beasom and Haucke (1975) compared the same four plotless methods and also concluded that point-
centered quarter method provides the most accurate estimate of density. In a comparison of a more
diverse set of methods (Engeman et al. 1994) have a more nuanced opinion of whether the point-centered
quarter method is more efficient in the field and more accurate in its density estimates, especially in
situations where individuals are not distributed randomly.

In recent years, as the point-centered quarter method has been used more widely, variations have
been proposed by Dahdouh-Guebas and Koedam (2006) to address a number of practical problems that
arise in the field (multi-stem trees, quarters where no trees are immediately present).

One use of the point-centered quarter method is to determine the relative importance of the
various tree species in a community. The term “importance” can mean many things depending on the
context. An obvious factor influencing the importance of a species to a community is the number of
trees present of that species. However, the importance of some number of small trees is not the same
as the importance of the same number of large trees. So the size of the trees also plays a role. Further,
how the trees are distributed throughout the community also has an effect. A number of trees of the
same species clumped together should have a different importance value than the same number of trees
distributed more evenly throughout the community.

Measuring importance can aid understanding the successional stages of a forest habitat. At different
stages, different species of trees will dominate. Importance values are one objective way of measuring
this dominance.

The three factors that we will use to determine the importance value of a species are the density, the
size, and the frequency (distribution). Ideally, to estimate these factors, one would take a large sample,
measuring, say, all the trees in a 100 × 100 meter square (a hectare). This can be extraordinarily time
consuming if the trees are very dense. The point-centered quarter method provides a quick way to make
such estimates by using a series of measurements along a transect.

2 Materials and Methods

The procedure outlined below describes how to carry out point-centered quarter method data collection
along a 100 m transect. It can be scaled up or down, as appropriate, for longer or shorter transects.
While this analysis can be carried out alone, groups of two or three can make for very efficient data
collection. Material requirements include 50 or 100 meter tape, a shorter 5 or 10 meter tape, a notebook,
a calculator, and a table of random numbers (Table 15) if the calculator cannot generate them.

1. Generate a list of 15 to 20 random two-digit numbers. If the difference of any two is 4 or less, cross
out the second listed number. There should be 10 or more two-digit numbers remaining; if not,
generate additional ones. List the first 10 remaining numbers in increasing order. It is important
to generate this list before doing any measurements.
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2. Lay out a 100 m transect (or longer or shorter as required).

3. The random numbers represent the distances along the transect at which data will be collected.
Random numbers are used to eliminate bias. Everyone always wants to measure that BIG tree
along the transect, but such trees may not be representative of the community.1 The reason for
making sure that points are at least 5 meters apart is so that the same trees will not be measured
repeatedly. Caution: If trees are particularly sparse, both the length of the transect and the
minimum distance between points may need to be increased.

4. The smallest random number determines the first sampling point along the transect. At this (and
every sampling) point, run an imaginary line perpendicular to the transect. This line and the
transect divide the world into four quarters (hence the name, point-centered quarter method).
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FIGURE 1. Sample points along a transect with the nearest trees in
each quarter indicated by · · · · · · .

5. Select one of the quarters. In that quarter, locate the tree nearest to the sampling point. For the
purposes of this exercise, to be counted as a “tree” it should have a minimum diameter of 4 cm
or, equivalently, a minimum circumference of 12.5 cm. (Caution: In other situations, different
minimum values may apply.)

For the each sampling point, record:

(a) the quarter number (I, II, III, or IV);

(b) the distance from the sampling point to the center of the trunk of the tree to the nearest
0.1 m (Caution: Review Appendix A on the 30–300 Rule.);

(c) the species of the tree;

(d) and the diameter at breast height (DBH) or circumference at chest height (CCH) to the
nearest cm, but again observe the 30–300 Rule.
Note: Brokaw and Thompson (2000) have shown that it is important to use the same height
to measure the diameter or circumference. They suggest using a standard height of 130 cm
and employing the notation D130 rather than DBH to indicate this. Whatever height is used
should be explicitly noted in the results.
Note: Tree calipers are an easy way to measure diameters, but are often unavailable. It may
be more convenient to measure the girth (circumference) of each tree instead of the diameter.
Cautions: If a tape is used to measure DBH, avoid protrusions on the trunk. If calipers are
used, an average from three caliper readings is recorded. If girths are recorded, rather than
convert each girth to a diameter, change the column heading from DBH to CCH. Make the
appropriate scaling adjustment in later calculations whenever diameters are involved.

See Table 1 for how this data should be organized. Repeat this for the other three quarters at
this sampling point. If a tree species cannot be identified, simply record it as A, B, C, etc., and
collect and label a sample leaf that for comparison purposes at other quarters and later taxonomic
identification.

1Even Cottam and Curtis (1956) warn us about this tendency: “Repeated sampling of the same stand with different
investigators indicates that some individuals have a tendency to place the sampling points so that large or unusual trees
occur more commonly than they occur in the stand.”
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6. Repeat this process for the entire set of sampling points.

7. Carry out the data analysis as described below.

For trees with multiple trunks at breast height, record the diameter (circumference) of each trunk
separately. What is the minimum allowed diameter of each trunk in a such multi-trunk tree? Such
decisions should be spelled out in the methods section of the resulting report. At a minimum, one
should ensure that the combined cross-sectional areas of all trunks meet the previously established
minimum cross-sectional area for a single trunk tree. For example, with a 4 cm minimum diameter for
a single trunk, the minimum cross-sectional area is

πr2 = π(2)2 = 4π ≈ 12.6 cm2.

3 Data Organization and Notation

The Data Layout

Table 1 illustrates how the data should be organized for the point-centered quarter method analysis.
Note the multi-trunk Accacia (8 cm, 6 cm; D130) in the third quarter at the second sampling point. The
only calculation required at this stage is to sum the distances from the sample points to each of the trees
that was measured. Note: A sample of only five points as in Table 1 is too few for most studies. These
data are presented only to illustrate the method of analysis in a concise way.

TABLE 1. Field data organized for point-centered quarter method analysis.

Sampling Point Quarter No. Species Distance (m) D130 (cm)

1 1 Acacia 1.1 6

2 Eucalyptus 1.6 48
3 Casuarina 2.3 15

4 Callitris 3.0 11

2 1 Eucalyptus 2.8 65

2 Casuarina 3.7 16

3 Acacia 0.9 8, 6
4 Casuarina 2.2 9

3 1 Acacia 2.8 4
2 Acacia 1.1 6

3 Acacia 3.2 6
4 Acacia 1.4 5

4 1 Callitris 1.3 19

2 Casuarina 0.8 22

3 Casuarina 0.7 12
4 Callitris 3.1 7

5 1 Acacia 1.5 7
2 Acacia 2.4 5

3 Eucalyptus 3.3 27
4 Eucalyptus 1.7 36

Total 40.9

Notation

We will use the following notation throughout this paper.
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SECTION 4: Basic Analysis 5

n the number of sample points along the transect

4n the number of samples or observations

one for each quarter at each point
i a particular transect point, where i = 1, . . . , n

j a quarter at a transect point, where j = 1, . . . , 4
Rij the point-to-tree distance at point i in quarter j

For example, the sum of the distances in the Table 1 is

5∑
i=1

4∑
j=1

Rij = 40.9.

4 Basic Analysis

The next three subsections outline the estimation of density, frequency, and cover. The most widely
studied of the three is density. In Section 5 we present a more robust way to determine the both a point
estimate and a confidence interval for population density. In this section density, frequency, and cover
are defined both in absolute and relative terms. The relative measures are then combined to create a
measure of relative importance.

Density

Absolute Density

The absolute density λ of trees is defined as the number of trees per unit area. Since λ is most easily
estimated per square meter and since a hectare is 10,000 m2, λ is often multiplied by 10,000 to express
the number of tree per hectare. The distances measured using the point-centered quarter method may
be used to estimate λ to avoid having to count every tree within such a large area.

Note that if λ is given as trees/m2, then its reciprocal 1/λ is the mean area occupied by a single tree.
This observation is the basis for the following estimate of λ. (Also see Section 5.)

From the transect information, determine the mean distance r̄, which is the sum of the nearest
neighbor distances in the quarters surveyed divided by the number of quarters,

r̄ =

∑n
i=1

∑4
j=1Rij

4n
.

For the data in Table 1,

r̄ =
40.9
20

= 2.05 m.

Cottam, Curtis, and Hale (1953) showed empirically and Morisita (1954) demonstrated mathematically
that r̄ is actually an estimate of

√
1/λ, the square root of the mean area occupied by a single tree.

Consequently, an estimate of the density is given by

Absolute density = λ̃ =
1
r̄2

=
16n2(∑n

i=1

∑4
j=1Rij

)2 . (1)

For the data in Table 1,

λ̃ =
1
r̄2

=
1

2.052
= 0.2380 trees/m2

,

or, equivalently, 2380 trees/ha.
One way to “see this” is to imagine a forest where the trees are uniformly distributed on a square

grid whose sides are r̄ = 2.05 m long. If a tree is located at the center of each square in this “forest,”
then the mean distance r̄ between trees is 2.05 m. Such a forest is illustrated in Figure 2. Each tree
occupies a square side 2.05 m and so the density is 1/2.052 = 0.2380 trees/m2 Though such a uniform
arrangement of trees violates the assumption of randomness, the figure does illustrate what is happening
“on average” or in the mean. (See Appendix B for a careful derivation of this estimate.)
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FIGURE 2. A grid-like forest with trees uniformly dispersed so that the nearest
neighbor is 2.05 m.

Absolute Density of Each Species

The absolute density of an individual species is the expected number of trees of that species per square
meter (or hectare). The absolute density λk of species k is estimated as the proportion of quarters
in which the species is found times the absolute density of all trees.

λ̂k =
Quarters with species k

4n
× λ̂. (2)

Table 2 gives the absolute density for each species in Table 1.

TABLE 2. The absolute density of each species.

Species Frequency/Quarter Trees/ha

Acacia 8/20 = 0.40 0.40× 2380 = 952

Eucalyptus 4/20 = 0.20 0.20× 2380 = 476
Casuarina 5/20 = 0.25 0.25× 2380 = 595

Callitris 3/20 = 0.15 0.15× 2380 = 357

Total 2380

Relative Density of a Species

The relative density of each species is the percentage of the total number observations of that species,

Relative density (Species k) =
λ̂k

λ̂
× 100.

Equivalently by making use of (2), we may define

Relative density (Species k) =
Quarters with species k

4n
× 100. (3)

In the current example, using the first definition, the relative density of a species can be found by making
use of the data in column 3 of Table 2. For example,

Relative density of Eucalyptus =
476
2380

× 100 = 20.0.
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Using the alternative method in (3) as a check on earlier calculations we see that the relative density is
just the proportion in column 2 of Table 2 times 100. For example,

Relative density of Eucalyptus =
4
20
× 100 = 20.0.

The relative densities should sum to 100 plus or minus a tiny round-off error.

TABLE 3. The relative density of each species.

Species Relative Density

Acacia 40.0
Eucalyptus 20.0

Casuarina 25.0
Callitris 15.0

Based on simulations, Cottam, Curtis, and Hale (1953) suggest that about 30 individuals of a par-
ticular species must be present in the total sample before confidence can placed in any statements about
relative frequency.

Cover or Dominance of a Species

Absolute Cover

The cover or dominance of an individual tree is measured by its basal area or cross-sectional area. Let
d, r, c, and A denote the diameter, radius, circumference, and basal area of a tree, respectively. Since
the area of a circle is A = πr2, it is also A = π(d/2)2 = πd2/4. Since the circumference is c = 2πr,
then the area is also A = c2/4π. Either A = πd2/4 or A = c2/4π can be used to determine basal area,
depending on whether DBH or CCH was recorded in Table 1.

The first step is to compute the basal area for each tree sampled, organizing the data by species.
This is the most tedious part of the analysis. A calculator that can handle lists of data or a spreadsheet
can be very handy at this stage. For the data in Table 1, the basal area for each tree was obtained using
the formula A = πd2/4. For trees with multiple trunks, the basal area for each trunk was computed
separately and the results summed. (See Acacia in Table 4.)

TABLE 4. The basal area of each tree.

Acacia Eucalyptus Casuarina Callitris Total
D130 Area D130 Area D130 Area D130 Area

(cm) (cm2) (cm) (cm2) (cm) (cm2) (cm) (cm2)

6 28.3 48 1809.6 15 176.7 11 95.0
8, 6 78.5 65 3318.3 16 201.1 19 283.5

4 12.6 27 572.6 9 63.6 7 38.5
6 28.3 36 1017.9 22 380.1

6 28.3 12 113.1

5 19.6
7 38.5
5 19.6

Total BA 253.7 6718.4 934.6 417.0 8323.7

Mean BA 31.71 1679.60 186.92 139.00 416.19

Next, determine the total cover or basal area of the trees in the sample by species, and then calculate
the mean basal area for each species.2 Be careful when computing the means as the number of trees for

2Note: Mean basal area cannot be calculated by finding the mean diameter for each species and then using the formula
A = πd2/4.
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SECTION 4: Basic Analysis 8

each species will differ. Remember that each multi-trunk tree counts as a single tree.
The absolute cover or dominance of each species is expressed as its basal area per hectare. This

is obtained by taking the number of trees per species from Table 2 and multiplying by the corresponding
mean basal area in Table 4. The units for cover are m2/ha (not cm2/ha), so a conversion factor is
required. For Acacia,

Absolute Cover (Acacia) = 31.71 cm2 × 952
ha
× 1 m2

10, 000 cm2
= 3.0

m2

ha
.

TABLE 5. The total basal area of each species.

Species Mean BA Number/ha Total BA/ha

(cm2) (m2/ha)

Acacia 31.71 952 3.0

Eucalyptus 1679.60 476 79.9
Casuarina 186.92 595 11.1

Callitris 139.00 357 5.0

Total Cover/ha 99.0

Finally, calculate the total cover per hectare by summing the per species covers.

Relative Cover (Relative Dominance) of a Species

The relative cover or relative dominance [see Cottam and Curtis (1956)] for a particular species
is defined to be the absolute cover for that species divided by the total cover times 100 to express the
result as a percentage. For example, for Eucalyptus,

Relative cover (Eucalyptus) =
79.9 m2/ha
99.0 m2/ha

× 100 = 80.7.

The relative covers should sum to 100% plus or minus a tiny round-off error. Note that the relative
cover can also be calculated directly from the transect information in Table 4.

Relative cover (Species k) =
Total BA of species k along transect
Total BA of all species along transect

× 100. (4)

For example,

Relative cover (Eucalyptus) =
6718.4 cm2

8323.7 cm2
× 100 = 80.7.

TABLE 6. The relative cover of each species.

Species Relative Cover

Acacia 3.0

Eucalyptus 80.7
Casuarina 11.2

Callitris 5.1
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The Frequency of a Species

Absolute Frequency of a Species

The absolute frequency of a species is the percentage of sample points at which a species occurs.
Higher absolute frequencies indicate a more uniform distribution of a species while lower values may
indicate clustering or clumping. It is defined as

Absolute frequency =
No. of sample points with a species

Total number of sample points
× 100. (5)

For example,

Absolute frequency (Acacia) =
4
5
× 100 = 80%.

Note that absolute frequency is based on the number of sample points, not the number of quarters!

TABLE 7. The absolute cover of each species.

Species Absolute Frequency

Acacia (4/5)× 100 = 80
Eucalyptus (3/5)× 100 = 60

Casuarina (3/5)× 100 = 60

Callitris (2/5)× 100 = 40

Total 240

Note that the total will sum to more than 100%.

Relative Frequency of a Species

To normalize for the fact that the absolute frequencies sum to more than 100%, the relative frequency
is computed. It is defined as

Relative frequency =
Absolute frequency of a species
Total frequency of all species

× 100. (6)

For example,

Relative frequency (Acacia) =
80
240
× 100 = 33.3.

The relative frequencies should sum to 100 plus or minus a tiny round-off error.

TABLE 8. The relative frequency of each species.

Species Relative Frequency

Acacia 33.3

Eucalyptus 25.0
Casuarina 25.0

Callitris 16.7

What is the difference between relative frequency and relative density? A high relative frequency
indicates that the species occurs near relatively many different sampling points, in other words, the
species is well-distributed along the transect. A high relative density indicates that the species appears
in a relatively large number of quarters. Consequently, if the relative density is high and the relative
frequency is low, then the species must appear in lots of quarters but only at a few points, i.e., the
species appears in clumps. If both are high, the distribution is relatively even and relatively common
along the transect. If the relative density is low (appears in few quarters) and the relative frequency is
high(er), then the species must be sparsely distributed (few plants, no clumping).
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SECTION 5: Population Density Reconsidered 10

The Importance Value of a Species

The importance value of a species is defined as the sum of the three relative measures:

Importance value = Relative density + Relative cover + Relative frequency. (7)

The importance value gives equal weight to the three factors of relative density, cover, and frequency.
This means that small trees (i.e., with small basal area) can be dominant only if there are enough of
them widely distributed across the transect. The importance value can range from 0 to 300.

For the data in Table 1, even though eucalypti are not very common, because of their size they turn
out to be the most important species within the community.

TABLE 9. The importance value of each species.

Species Relative Density Relative Cover Relative Frequency Importance

Acacia 40.0 3.0 33.3 76.3

Eucalyptus 20.0 80.7 25.0 125.7

Casuarina 25.0 11.2 25.0 61.2
Callitris 15.0 5.1 16.7 36.8

Comment. Each of the measures that make up relative importance may be calculated without knowing
the absolute density of the trees at the site (review (3), (4), and (6).) In fact, any estimate for the
absolute density of all species leads to the same relative densities for each species. Consequently, the
actual value of density of the plot is not needed to determine relative importance. However, in most
studies, absolute density is one the parameters of greatest interest. Because of this, there have been
a number of different methods to estimate absolute density from point-centered quarter method data
proposed in the literature. In the next section we explore one of these and others are discussed in
Appendix B. Whichever method is used, relative importance is unaffected.

It has been shown by Pollard (1971) that the estimate of Cottam and Curtis (1956) of λ in (1) is
biased.3 Nonetheless, this estimate appears widely in the literature and, so, has been used here. Another
drawback of the estimate in (1) is that no confidence limits are available for it. The next section addresses
both of these issues.

5 Population Density Reconsidered

Pollard (1971) and Seber (1982) derived an unbiased estimate of the absolute population density using
point-centered quarter method data that we now present. It also has the advantage that it can be used
to determine confidence intervals for the density estimate.

Intuition

The discussion that follows is meant to inform our intuition and by no means constitutes a proof of any
of the results, which requires a substantially more sophisticated argument. See Appendix B.

The assumption of this model is that trees are randomly distributed in the survey area. Now think
of the random points along the transect as representing “virtual trees”. The measured distance Rij is
a nearest neighbor distance from a virtual to a real tree. As such, it is an estimate of the actual mean
nearest neighbor tree-to-tree distance.

If an actual tree-to-tree distance were r meters, we could draw circles of radius r/2 centered at each
tree. See Figure 3. Notice that the circles would not overlap and that only one tree would lie in each
circle.

3Pollard (1971) states that the reason for this is Cottam and Curtis (1956) chose to estimate the mean area A occupied
by a tree as the reciprocal of λ. Rather then estimate A directly, as we saw in (1) they estimated r̄, which is the reciprocal
of the square root of A. Squaring and inverting leads to a biased estimate of A.
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FIGURE 3. When trees are r units apart, circles of
radius r/2 centered at each tree do not overlap and only
one tree would lies in each circle.

The area of each circle is π(r/2)2 = πr2/4 m2. Since there is exactly 1 tree per circle and since the
circles don’t overlap, the density is 1 tree per πr2/4 m2, or equivalently,

4
πr2

trees/m2.

The observed point-to-tree distances Rij are the estimates of the actual distances. So π(Rij/2)2 =
πR2

ij/4 m2 is an estimate of the sample mean area of a circle occupied by a single organism. Using the
4n area estimates along the transect, an unbiased estimate of the mean area occupied by an organism is∑n

i=1

∑4
j=1

πR2
ij

4

4n− 1
=
π
∑n
i=1

∑4
j=1R

2
ij

4(4n− 1)
.

Note: For this estimate to be unbiased, the denominator is one less than the actual number of observa-
tions, i.e., 4n− 1. The density is the reciprocal of the mean circular area.

FORMULA 5.1. An unbiased estimate of the population density λ is given by

λ̂ =
4(4n− 1)

π
Pn
i=1

P4
j=1 R

2
ij

,

where the units are typically items/m2. Multiplying by 10, 000 yields trees/ha. The variance is given by

Var(λ̂) =
λ̂2

4n− 2
.

EXAMPLE 5.1. Reanalyze the data in Table 1 by calculating λ using Formula 5.1.

SOLUTION. First we determine

nX
i=1

4X
j=1

R2
ij = (1.1)2 + (1.6)2 + · · ·+ (1.7)2 = 100.71.

Unlike in (1), remember to square the distances first, then sum. The density estimate is

10, 000λ̂ = 10, 000 · 4(4n− 1)

π
Pn
i=1

P4
j=1 R

2
ij

=
10, 000(4(20− 1))

100.71π
= 2402 trees/ha.

This estimate is about 1% higher than the earlier biased estimate of 2380.

Confidence Intervals

Confidence interval estimates (see Appendix B for details) for λ may be calculated in the following way.

FORMULA 5.2. For n > 7, the endpoints of a confidence interval at the (1− α)100% level are determined by

lower endpoint: λ =

“
zα

2
+
√

16n− 1
”2

π
Pn
i=1

P4
j=1 R

2
ij

and

upper endpoint: λ =

“
z1−α2 +

√
16n− 1

”2

π
Pn
i=1

P4
j=1 R

2
ij

,

where zβ is the standard normal z-value corresponding to probability β.
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SECTION 5: Population Density Reconsidered 12

EXAMPLE 5.2. The following data were collected at Lamington National Park in 1994. The data are
the nearest point-to-tree distances for each of four quarters at 15 points along a 200 meter transect. The
measurements are in meters. Estimate the tree density and find a 95% confidence interval for the mean.

Point I II III IV

1 1.5 1.2 2.3 1.9

2 3.3 0.7 2.5 2.0

3 3.3 2.3 2.3 2.4
4 1.8 3.4 1.0 4.3

5 0.9 0.9 2.9 1.4

6 2.0 1.3 1.0 0.7
7 0.7 2.0 2.7 2.5

8 2.6 4.8 1.1 1.2

9 1.0 2.5 1.9 1.1
10 1.6 0.7 3.4 3.2

11 1.8 1.0 1.4 3.6

12 4.2 0.6 3.2 2.6
13 4.1 3.9 0.2 2.0

14 1.7 4.2 4.0 1.1
15 1.8 2.2 1.2 2.8

SOLUTION. In this example, the number of points is n = 15 and the number of samples is 4n = 60.
Therefore, the density estimate is

λ̂ =
4(4n− 1)

π

nX
i=1

4X
j=1

R2
ij

=
4(59)

347.63π
= 0.2161 trees/m2.

Since the number of points is greater than 7, confidence intervals may be calculated using Formula 5.2.
To find a 1 − α = 0.95 confidence interval, we have α = 0.05 and so z1−α2 = z0.975 = 1.96 and z0.025 =
−z0.975 = −1.96. The lower endpoint of the confidence interval is

z0.025 +
√

16n− 1q
π
Pn
i=1

P4
j=1 R

2
ij

=

“
−1.96 +

p
16(15)− 1

”2

347.63π
= 0.1669

and the upper endpoint is`
z0.975 +

√
16n− 1

´2
π
Pn
i=1

P4
j=1 R

2
ij

=

“
1.96 +

p
16(15)− 1

”2

347.63π
= 0.2778.

Therefore, the confidence interval for the density is

(0.1669, 0.2778) trees/m2.

Using Formula 5.1, the point estimate for the density4

λ̂ =
4(4n− 1)

π
Pn
i=1

P4
j=1 R

2
ij

=
4(60− 1)√

347.63π
= 0.2161 trees/ha

The units are changed to hectares by multiplying by 10, 000. Thus, λ̂ = 2161 trees/ha while the confidence
interval is (1669, 2778) trees/ha.

Cautions

The estimates and confidence intervals for density assume that the points along the transect are spread
out sufficiently so that no organism is sampled in more than one quarter. Further, the density estimate
assumes that the spatial distribution of the organisms is completely random. For example, it would be
inappropriate to use these methods in an orchard or woodlot where the trees had been planted in rows.

4Instead, if (1) were used, the density estimate would be quite similar, 2205 trees/ha.
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SECTION 6: Modifications, Adaptations, and Applications 13

Exercises

1. The following data were collected in interior Alaska by Hollingsworth (2005). The data are the nearest
point-to-tree distances in meters for each of four quarters at the first 25 points of 724 sample points.
All trees were black spruce, Picea mariana. Estimate the tree density and find a 95% confidence
interval for the mean. [Answer: λ̂ = 7037 trees/ha with a 95% confidence interval of (5768, 8551).]

Point I II III IV Point I II III IV

1 7.7 2.2 1.4 1.6 14 1.2 1.1 1.0 1.4
2 0.97 1.2 1.4 1.5 15 0.5 0.7 0.9 1.1

3 1.4 1.4 1.8 1.6 16 0.52 0.85 0.82 2.1
4 1.7 2.5 2.2 1.8 17 0.51 0.46 1.6 1.1
5 0.77 1.2 1.0 1.2 18 0.46 0.9 1.7 0.65

6 0.38 0.64 1.84 1.7 19 0.35 0.64 0.98 0.53
7 0.45 0.6 0.55 0.62 20 0.98 1.3 2.1 1.6
8 0.15 0.14 0.96 0.9 21 0.35 0.5 0.25 1.0

9 0.39 0.5 0.57 0.88 22 0.4 0.4 0.6 0.8
10 0.72 0.73 0.45 0.75 23 0.6 1.5 1.3 1.1
11 0.35 1.1 0.45 1.1 24 0.4 0.5 0.9 0.8
12 0.55 0.9 0.65 0.9 25 0.5 1.1 2.1 1.1

13 0.8 0.7 0.8 0.9

2. The following data were collected at Lamington National Park in 1994 by another group of students.
The data are the nearest point-to-tree distances (m) for each of four quarters at 14 points along a
200 meter transect. Estimate the tree density and find a 95% confidence interval. [Answer: λ̂ = 1382
trees/ha with a 95% confidence interval of (1057, 1792).]

I II III IV I II III IV

0.6 1.4 3.6 2.0 3.4 3.4 2.9 2.6
0.6 0.9 3.2 1.8 1.7 3.2 2.7 4.2

2.0 3.9 1.8 2.2 3.8 4.2 3.2 4.4
4.1 7.0 1.6 4.0 1.8 1.1 4.3 3.4
3.2 2.0 1.0 3.8 2.8 0.9 2.7 2.3

2.8 3.3 1.3 0.8 1.4 5.0 4.5 2.7
3.1 1.9 2.9 3.4 2.0 0.2 3.0 4.0

6 Modifications, Adaptations, and Applications

In Section 1, we indicated that the point-centered quarter methodis both efficient and accurate. However,
as Dı́az, Conde, and Orihuela (1992) note, in many situations there is

a discrepancy between the behaviour of the real world and the way it is assumed to behave
by the model. Thus, reliability and accuracy have not only a statistical component but also
a biological one. Most real-life sampling situations violate the assumptions of the underlying
models of sampling theory and can render those methods invalid. In such cases, the results
may bring about misleading conclusions. In addition, sampling in some environments, such
as coastal areas, can be severely constrained by practical considerations.

The material in this section addresses some of these ‘practical considerations’ that occur in the field.

The Problem with ‘Breast Height’ (BH)

Brokaw and Thompson (2000) did an extensive survey of the literature and found that more than half
the papers that used BH did not report the actual value used. Of those that did report BH, values
ranged from 120 cm to 160 cm. See Table 10.
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SECTION 6: Modifications, Adaptations, and Applications 14

TABLE 10. The distribution of values stated for ‘breast hight’ (BH)
in papers published in Biotropica, Ecology, Journal of Tropical Ecology,
Forest Service, and Forest Ecology and Management during the period
1988–1997. Adapted from Brokaw and Thompson (2000), Table 1.

BH (cm) 120 130 135 137 140 150 160 None Total

Articles 1 113 2 28 27 10 1 258 440

Since the mode of the BH-values listed was 130 cm, Brokaw and Thompson (2000) strongly suggest
adopting this as the standard BH-value. They strongly suggest denoting this value by ‘D130’ rather than
DBH while reserving ‘DBH’ as a generic term. At a minimum, the BH-value used should be explicitly
stated. If a value x other than 130 cm is used, it might be denoted as ‘Dx’.

As one would expect, DBH does decrease as height increases. In a field survey of 100 trees, Brokaw
and Thompson (2000) found that the mean difference between D130 and D140 was 3.5 mm (s = 5.8,
n = 100). This difference matters. Brokaw and Thompson (2000) report that this resulted in a 2.6%
difference in total basal area. When biomass was was calculated using the equation

ln(dry weight) = −1.966 + 1.242 ln(DBH2)

there was a 4.0% difference.
Using different values of BH within a single survey may lead to erroneous results. Additionally,

Brokaw and Thompson’s (2000) results show that failing to indicate the value of BH may lead to
erroneous comparisons of characteristics such as diameter-class distributions, biomass, total basal area,
and importance values between studies.

Vacant Quarters and Truncated Sampling

A question that arises frequently is whether there is a distance limit beyond which one no longer searches
for a tree (or other organism of interest) in a particular quarter. The simple answer is, “No.” Whenever
possible, it is preferable to make sure that every quadrant contains an individual, even if that requires
considerable effort. But as a practical matter, a major reason to use the point-centered quarter method
is its efficiency, which is at odds with substantial sampling effort. Additionally, in Section 2 we noted
that sample points along the transect should be sufficiently far apart so that the same tree is not sampled
at two adjacent transect points. Dahdouh-Guebas and Koedam (2006) suggest that it may be preferable
to establish a consistent distance limit for the sampling point to the nearest individual rather than to
consider the same individual twice. (Note, however, that Cottam and Curtis (1956) explicitly state
that they did not use any method to exclude resampling a tree at adjacent transect points and that
resampling did, in fact, occur.)

Whether because a distance limit is established for reasons of efficiency [often called truncated sam-
pling] or to prevent resampling, in practice vacant quarters, i.e., quadrants containing no tree may occur.
In such cases the calculation of the absolute density must be corrected, since a density calculated from
only those quarters containing observations will overestimate the true density.

Warde and Petranka (1981) give a careful derivation of a correction factor (CF) to be used in such
cases. In the language of the current paper, as usual, let n denote the number of sampling points and 4n
the number of quarters. Let n0 denote the number of vacant quarters. Begin by computing the density
for the 4n− n0 non-vacant quarters,

r̄′ =

4n−n0∑
m=1

Rm

4n− n0
,

where Rm is the distance from tree m to its corresponding transect sample point, which is the analog
to (1). Then

Absolute Density (corrected) = λ̃c =
1

(r̄′)2
· CF,
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SECTION 6: Modifications, Adaptations, and Applications 15

where CF is the correction factor from Table 11 corresponding to proportion of vacant quarters, n0
4n .

Note that as the proportion of vacant quarters increases, CF decreases and, consequently, so does the
estimate of the density (as it should).

TABLE 11. Values of the correction factor (CF) to the density esti-
mate based on the formula of Warde and Petranka (1981).

n0/4n CF n0/4n CF n0/4n CF n0/4n CF

0.005 0.9818 0.080 0.8177 0.155 0.7014 0.230 0.6050

0.010 0.9667 0.085 0.8091 0.160 0.6945 0.235 0.5991

0.015 0.9530 0.090 0.8006 0.165 0.6877 0.240 0.5932
0.020 0.9401 0.095 0.7922 0.170 0.6809 0.245 0.5874

0.025 0.9279 0.100 0.7840 0.175 0.6742 0.250 0.5816

0.030 0.9163 0.105 0.7759 0.180 0.6676 0.255 0.5759
0.035 0.9051 0.110 0.7680 0.185 0.6610 0.260 0.5702

0.040 0.8943 0.115 0.7602 0.190 0.6546 0.265 0.5645
0.045 0.8838 0.120 0.7525 0.195 0.6482 0.270 0.5590

0.050 0.8737 0.125 0.7449 0.200 0.6418 0.275 0.5534

0.055 0.8638 0.130 0.7374 0.205 0.6355 0.280 0.5479
0.060 0.8542 0.135 0.7300 0.210 0.6293 0.285 0.5425

0.065 0.8447 0.140 0.7227 0.215 0.6232 0.290 0.5370

0.070 0.8355 0.145 0.7156 0.220 0.6171 0.295 0.5317
0.075 0.8265 0.150 0.7085 0.225 0.6110 0.300 0.5263

Caution: Dahdouh-Guebas and Koedam (2006) propose (without mathematical justification) using
a correction factor of CF′ = 1 − n0

4n . While this correction factor also lowers the value of the density
based on the trees actually measured, this correction differs substantially from that derived by Warde
and Petranka (1981). For example, if 5% of the quarters are vacant, then from Table 11 we find
CF = 0.873681 while CF′ = 0.95.

The Problem of Unusual Trees or Tree Clusters

Single Trunk Splitting. In Section 2 the problem of trees with multiple trunks was briefly considered.
What we had in mind there was a tree whose single trunk split into two or more trunks below breast
height (130 cm). See Figure 4. In such a case, there is an unambiguous distance from the point along
the transect to the main trunk of the tree. Further, it is natural to obtain the basal area for the tree as
the sum of the basal areas for all of the trunks at breast height.

FIGURE 4. A willow tree with a single trunk that splits
into multiple trunks below 130 cm.
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Tight Clusters. However, other configurations of multi-stem trees are possible. A tree may have
tightly-clustered multiple trunks at ground level as in Figure 5. In such a case, the entire complex is a
single individual. The distance from the transect reference point may be measured in to the center of
the cluster or, alternatively, be measured as the average of the distances to each of the trunks. As in
the previous case, it is natural to obtain the basal area for the tree as the sum of the basal areas for all
of the trunks at breast height. (Note: This differs from the the procedure outlined in Dahdouh-Guebas
and Koedam (2006) where they suggest using the central stem of the cluster. But they are describing
problems with mangroves whose growth architecture is quite different than the trees in the forests of
North America. The trees in question here are more similar to those with split trunks.)

FIGURE 5. A birch tree with tightly clustered multiple
trunks at ground level.

Loose Clusters. Tree clusters such as mangroves present significantly more complicated measurement
issues for the point-centered quarter method. Even determining the distance from the transect reference
point to such a tree is complicated. Individual stems may be interconnected over relatively large dis-
tances, so how does one determine which stems are part of the same individual? The researcher facing
such issues is directed to a recent paper by Dahdouh-Guebas and Koedam (2006) in which they suggest
solutions to these and other related questions.

FIGURE 6. A individual mangrove with its prop roots
has a complex array of roots and stems.

Miscellaneous Issues

Crooked Trunks. In Section 2 we indicated that diameters should be measured at a consistent height
and suggested that D130 be used. However, some trees may be crooked or growing (somewhat) horizon-
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tally at 130 cm above the forest floor. Dahdouh-Guebas and Koedam (2006) suggest that the diameter
of such a stem or trunk always be measured at 130 cm along the stem, whether or not this is actually
130 cm above the ground.

Dead Trees. The implicit but unstated assumption in Section 2 was that we were measuring live
trees in the survey. However, depending on the purpose of the survey, dead trees may be important to
include. This might be the case if the purpose is to assess exploitable firewood. Such decisions should
be explicitly noted in the methods section of the resulting report.

Reversing the roles of live and dead trees, Rheinhardt et al. (1997) used the point-centered quar-
ter method to determine the biomass of standing dead trees in a wetland and also the biomass of
coarse woody debris available for nutrient recycling. In the latter case the distance, diameter (minimum
4 inches), and length (minimum 3 feet) of the debris item nearest to the transect sampling point in each
quarter was recorded.

Novel Applications

Distance methods have been commonly used for vegetation surveys and are easily adapted to inventories
of rare plants or other sessile organisms. The approach may also be useful for population studies of more
mobile animal species by obtaining abundance estimates of their nests, dens, roosting sites, or scat piles.

Grasslands. The point-centered quarter method has been adapted to measure density and importance
values when sampling grassland vegetation. Dix (1960) used the distance, measured at ground level,
from the sampling point to the emergence from the soil of the nearest living herbaceous shoot in each
quarter. Since this was the only measurement recorded, importance values were determined using only
relative densities and relative frequencies.

Penfound (1963) modified Dix’s method to include a relative cover or weight component to better
match importance values of trees. In particular, once the distance to a culm or plant was measured,
the plant was cut off at soil level and later its oven-dry weight was determined. The relative weight for
each species was determined as the total weight for the species divided by the total weight for all species
times 100 to express the result as a percentage. The importance of each species was then defined as the
sum of the relative frequency, relative density, and relative weight.

On the surface of it, the aggregation often exhibited grassland populations violates the assumption
of the random distribution assumption of the point-centered quarter method. Indeed, empirical studies
by Risser and Zedler (1968) and Good and Good (1971) indicate that the point-centered quarter method
appears to underestimate species density in such cases. In particular, Rissler and Zelder (1968) suggest
that when using the point-centered quarter method on grasslands, one should check against counts made
using quadrat samples.

Animal Surveys. The point-centered quarter method was adapted in a series of projects of students
of mine to determine the densities and importance values of certain sessile or relatively slow moving
marine organisms.

One group carried out a project surveying holothurians (sea cucumbers) in the reef flat of a coral cay.
Transects were laid out in the usual way and the distance and species of the nearest holothurian to each
sampling point was recorded for each quarter. These data allowed computation of the relative density
and relative frequency for each species. To take the place of relative cover, the volume of each holothurian
was recorded. Volume was estimated by placing each organism in a bucket full of sea water and then
removing it. The bucket was then topped off with water from a graduated cylinder and the volume of
this water recorded. Since volume and mass are proportional, the relative volume is an approximation
of the relative biomass. The sum of the relative density, relative frequency, and relative volume for each
species gave its importance value.

A similar survey was conducted both in a reef flat and in an intextidal zone of a sand island for
asteroidea (sea stars) using radial “arm length” instead of DBH. Another survey, this time of anemones
in the intextidal zone of a sand island was conducted. Since these organisms are more elliptical than
circular, major and minor axes were measured from which area covered could be estimated.
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While no extensive testing of the accuracy of these methods was conducted, say against values
derived from using quadrats, the use of the point-centered quarter method in each case provided at least
a reasonable preliminary snapshot of the relative importance and densities of the organisms surveyed.

A Final Caution. Whenever encountering a non-typical situation, it is important to note the situation
and its resolution in the resulting report. Be consistent about all such choices. Additional problem issues
with possible resolutions are described in Appendix B of Dahdouh-Guebas and Koedam (2006).

A Accuracy, Precision, and the 30–300 Rule

All biologists are aware of the importance of accuracy and precision in data collection and recording.
While these two terms are used synonymously in everyday speech, they have different meanings in
statistics. Accuracy is the closeness of a measured or computed value to its true value, while precision
is the closeness of repeated measurements of the same quantity to each other. A biased but sensitive
instrument may yield inaccurate but precise readings. On the other hand, an insensitive instrument
might result in an accurate reading, but the reading would be imprecise, since another reading of the
same object would be unlikely to yield an equally accurate value. Unless there is bias in a measuring
instrument, precision will lead to accuracy.

Some measurements are by their nature precise. When we count eggs in a monitor lizard’s nest and
record the number as 9 or 13, these are exact numbers and, therefore, precise variates. Most continuous
variables, however, are approximate with the exact value unknown and unknowable. Recordings of
continuous variable data imply a level of precision by the number of digits used. For example, if the
length of an adult female monitor lizard is recorded as 97.2 cm, the implied true value of the length is
between 97.15 and 97.25 cm. In other words, the last digit recorded defines an interval in which the
exact value of the variable resides. A measurement of 97 cm implies a length between 96.5 and 97.5 cm.

In most studies too much precision can slow down data collection while not contributing significantly
to the resolution of scientific questions. While it doesn’t make sense to measure large eucalyptus trees
to the nearest millimeter or to weigh sperm whales to the nearest gram, what level of precision should
be recorded? To how many significant figures should we record measurements? Many biologists use
the thirty–three hundred rule (30–300) to determine precision for data sets. This rule is easy to
apply and will save a great deal of time and effort. Array the sample by order of magnitude from largest
to smallest measurement. The number of unit steps between the largest and smallest value should be
between 30 and 300. For example, if you were collecting small shells in the intextidal zone of a beach
and the largest was 9 mm and the smallest was 5 mm, the number of units steps would be 4 (a unit
step is a millimeter in this example). If you recorded the lengths to the nearest tenth of a millimeter
with the largest being 9.2 mm and the smallest 5.1 mm in length, the unit step is now 0.1 mm and there
are 41 unit steps (9.2 − 5.1 = 4.1 mm or 41 tenths of mm) in the data array. The data set will now
give you enough precision for most statistical analyses and allow for a reasonable error in recording, i.e.,
a mistake of 1 in the last digit recorded is now less than 2.5% as opposed to 25% when the data were
recorded to the nearest millimeter.

If sedge plant heights were measured to the nearest tenth of centimeter with the tallest being 194.3 cm
and the shortest being 27.1 cm, the unit step would be tenths of centimeters and the data array would
have 1672 unit steps (194.3− 27.1 = 167.2 or 1672 tenths of cm). Clearly there is more precision in this
data set than is needed. Recording these plant heights to the nearest centimeter would yield 167 unit
steps (194− 27 = 167 cm) and would give enough precision for analysis while saving time and effort in
data collection.

B Technical Details

This section outlines the derivation of the density estimate in Section 4 and the estimate and correspond-
ing confidence interval endpoints in Section 5. It also discusses additional similar methods of estimating
density using plotless methods.
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Derivation of Equation (1)

Assume that a set of points (plants) is distributed randomly over a two-dimensionsal region where λ is
the mean number of points per unit area (density). The probability that a randomly chosen region of
unit area will contain x points is given by the Poisson distribution

λxe−λ

x!
.

More generally, start with a circle of radius r that is centered at a point chosen at random along
a transect. Assume that the circle has been divided into q equiangular sectors and let the region in
question be one of these sectors. Then its area is πr2/q. If q = 1, the region is the entire circle; if q = 4
this is the point-centered quarter method. Morisita (1954) used the term “angle methods” to describe
density estimates based on this process. The expected number of points in one such sector of the circle
is λπr2/q and the so the probability of finding x points in a sector is

(λπr2q−1)xe−λπr
2q−1

x!
. (8)

Setting x = 0, we obtain the probability that a sector of the circle of radius r will contain no points.

P (no individuals in a sector circle of radius r) = e−λπr
2q−1

. (9)

Equation (9) is a function of r that represents the probability that the distance from the sample
point to the nearest organism within the sector is at least r. Consequently,

P (at least 1 individual in the circle of radius r) = 1− e−λπr
2q−1

. (10)

Differentiating (10) gives the probability density function for r

f(r) = 2λπrq−1e−λπr
2q−1

. (11)

Therefore, the probability that there is at least one individual in the sector between distances a and b
from the center of the circle is ∫ b

a

2λπrq−1e−λπr
2q−1

dr. (12)

The expected (mean) value of r is obtained by integrating rf(r) over (0,∞). Using integration by
parts and then the substitution u =

√
λπ√
q r,

E(r) =
∫ ∞

0

2λπr2q−1e−λπr
2q−1

dr

= re−λπr
2q−1

∣∣∣∣∞
0

+
∫ ∞

0

e−λπr
2q−1

dr

= 0 +
√
q

√
λπ

∫ ∞
0

e−u
2
du

=
√
q

√
λπ
·
√
π

2

=
√
q

2
√
λ
, (13)

Solving for the density λ in (13) we obtain

λ =
q

4[E(r)]2
. (14)

Using the sample mean r̄ to estimate E(r) and the point-centered quarter method with q = 4, we obtain
the estimate of the density in (1),

λ̃ =
1
r̄2

As Pollard (1971) and others point out, this estimate is biased.
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Derivation of Formula 5.1

The intuition used in Sections 4 and 5 was that the density and the mean area occupied by a tree are
reciprocals of each other. Assume that n random sampling points have been selected along a transect
and that there are q equiangular sectors centered at each such point. For i = 1, . . . , n and j = 1, . . . , q
let rij denote the distance from the ith sample point to the nearest organism in the j sector. Since these
distances are independent, using (11) the likelihood of their joint occurrence is the product(

2λπr11q−1e−λπr
2
11

)(
2λπr12q−1e−λπr

2
12

)
· · ·
(

2λπrnqq−1e−λπr
2
nq

)
= (2λπq−1)nq(r11r12 · · · rnq)e−λπq

−1Pn
i=1

Pq
j=1 r

2
ij . (15)

To simplify notation, denote the nq distances rij by rm for m = 1, . . . , nq using the one-to-one corre-
spondence rij ←→ r(i−1)q+j . For example, r11 ←→ r1,r1q ←→ rq, r21 ←→ rq+1, and rnq ←→ rnq. Then
(15) becomes

(2λπq−1)nq(r1r2 · · · rnq)e−λπq
−1Pnq

m=1 r
2
m . (16)

Using the nq sample distances an estimate of the mean area occupied by a tree is given by

πq−1
∑nq
m=1 r

2
m

nq
.

If our intuition is correct expectation of the reciprocal of this mean area,

E

[
nq

πq−1
∑nq
m=1 r

2
m

]
=
∫ ∞

0

· · ·
∫ ∞

0

∫ ∞
0

nq

πq−1
∑nq
m=1 r

2
m

(2λπq−1)nq(r1r2 · · · rnq)e−λπq
−1Pnq

m=1 r
2
m dr1dr2 · · · drnq, (17)

should be λ. To carry out this calculation, use the substitution [see Pollard (1971)]

uj = λπq−1

j∑
m=1

r2m j = 1, . . . , nq

with Jacobian

J(u1, u2, . . . , unq) =

∣∣∣∣∣∣∣∣∣
2λπq−1r1 0 · · · 0
2λπq−1r1 2λπq−1r2 · · · 0

...
...

...
...

2λπq−1r1 2λπq−1r2 · · · 2λπq−1rnq

∣∣∣∣∣∣∣∣∣ = (2λπq−1)nqr1r2 · · · rnq.

The limits of integration for unq are 0 to ∞ and for um (i = m, . . . , nq− 1) they are 0 to um+1. So (17)
becomes

E

[
nq

πq−1
∑nq
m=1 r

2
m

]
= E

[
λnq

unq

]
=
∫ ∞

0

· · ·
∫ u3

0

∫ u2

0

λnq

unq
e−unq du1du2 · · · dunq

=
∫ ∞

0

· · ·
∫ u3

0

λnqu2

1 · unq
e−unq du2 · · · dunq

=
∫ ∞

0

· · ·
∫ u4

0

λnqu2
3

2 · 1 · unq
e−unq du3 · · · dunq

...

=
∫ ∞

0

λnqunq−1
nq

(nq − 1)!unq
e−unq dunq

=
λnq

(nq − 1)!

∫ ∞
0

unq−2
nq e−unq dunq

=
λnq

nq − 1
. (18)

http://people.hws.edu/mitchell/PCQM.pdf Version 2.15



SECTION B: Technical Details 21

So the reciprocal of the mean area occupied by a tree is also a biased estimate of λ, but the bias is easily
corrected. An unbiased estimate of the density is

λ̂ =
nq − 1
nq

· nq

πq−1
∑nq
m=1 r

2
m

=
q(nq − 1)

π
∑n
i=1

∑q
j=1 r

2
ij

. (19)

For the point-centered quarter method method where q = 4 we have that an unbiased estimate of the
density is

λ̂ =
4(4n− 1)

π
∑n
i=1

∑4
j=1 r

2
ij

,

which is Formula 5.1.
It is worth mentioning the interpretation of (19) when q = 1. In this case the distance from each

sample point to the nearest organism is measured and an unbiased estimate of the density is given by
the simpler formula

λ̂ =
n− 1

π
∑n
i=1 r

2
i

.

Confidence Intervals and the Derivation of Formula 5.2

Next, recall that the probability density function of the chi-square distribution for x ≥ 0 is

f(x; k) =

(
1
2

)k/2
xk/2−1

Γ(k/2)
e−x/2, (20)

where k denotes degrees of freedom and Γ(z) is the gamma function.5 If we let y = 2λπr2q−1, then
dy = 4λπrq−1 so (12) may be written as ∫ πb2

πa2

1
2e
−y/2 dy.

In other words, using (12) and (20) we see that 2λπr2q−1 is distributed as χ2
(2).

To generalize, assume as before that we have selected n random sampling points along a transect
and that there are q equiangular sectors centered at each such point. For i = 1, . . . , n and j = 1, . . . , q
let rij denote the distance from the ith sample point to the nearest organism in the j sector. From (15)
the probality of their joint occurrence is the product

(2λπq−1)nq(r11r12 · · · rnq)e−λπq
−1Pn

i=1
Pq
j=1 r

2
ij .

Since the distances are independent and since each 2λπr2ijq
−1 is distributed as χ2

(2), then

2λπq−1
n∑
i=1

q∑
j=1

r2ij ∼ χ2
(2nq). (21)

Consequently, a (1− α)100% confidence interval for λ is determined by the inequalities

χα
2 (2nq) < 2λπq−1

n∑
i=1

q∑
j=1

r2ij < χ1−α2 (2nq).

Solving for λ we obtain the following result.

FORMULA B.1. Assume n random sampling points have been selected along a transect and that there are q
equiangular sectors centered at each such point. For i = 1, . . . , n and j = 1, . . . , q let rij denote the distance

5In particular, if z is a positive integer, then Γ(z) = (z − 1)!.
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from the ith sample point to the nearest organism in the j sector. A (1 − α)100% confidence interval for the
density λ is given by (C1, C2), where

C1 =
qχα

2 (2nq)

2π
Pn
i=1

Pq
j=1 r

2
ij

and C2 =
qχ1−α2 (2nq)

2π
Pn
i=1

Pq
j=1 r

2
ij

.

In particular, for the point-centered quarter method where q = 4, we have

C1 =
2χα

2 (8n)

π
Pn
i=1

P4
j=1 r

2
ij

and C2 =
2χ1−α2 (8n)

π
Pn
i=1

P4
j=1 r

2
ij

.

For convenience, for 95% confidence intervals, Table 14 provides the required χ2 values for up to
n = 240 sample points (960 quarters).

EXAMPLE B.1. Return to Example 5.2 and calculate a confidence interval for the density using For-
mula B.1.

SOLUTION. From Formula B.1,

C1 =
2χα

2 (8n)

π
Pn
i=1

P4
j=1 r

2
ij

=
2χα

2 (120)

π
P15
i=1

P4
j=1 r

2
ij

=
183.15

1092.11
= 0.1677.

and

C2 =
2χ1−α2 (8n)

π
Pn
i=1

P4
j=1 r

2
ij

=
2χ1−α2 (120)

π
P15
i=1

P4
j=1 r

2
ij

=
304.42

1092.11
= 0.2787.

This interval is nearly identical to the one computed in Example 5.2 using a normal approximation.

Normal Approximation

A difficulty with calculating confidence intervals using Formula B.1 is that 2nq is often greater than the
degrees of freedom listed in a typical χ2-table. For larger values of 2nq, the appropriate χ2 values can
be obtained from a spreadsheet program or other statistical or mathematical software.

Alternatively, one can use a normal approximation. It is a well-known result due to Fisher that if
X ∼ χ2

(k), then
√

2X is approximately normally distributed with mean
√

2k − 1 and unit variance. In
other words,

√
2X −

√
2k − 1 has approximately a standard normal distribution.

In the case at hand, 2λπq−1
∑n
i=1

∑q
j=1 r

2
ij ∼ χ2

(2nq). Therefore, the endpoints for a a (1 − α)100%
confidence interval for λ are determined as follows:

zα/2 <

√
2
(

2λπq−1
∑n
i=1

∑q
j=1 r

2
ij

)
−
√

2(2nq)− 1 < z1−α/2

⇐⇒ zα/2 +
√

4nq − 1 <
√

4λπq−1
∑n
i=1

∑q
j=1 r

2
ij < z1−α/2 +

√
4nq − 1

⇐⇒
zα/2 +

√
4nq − 1√

4πq−1
∑n
i=1

∑q
j=1 r

2
ij

<
√
λ <

z1−α/2 +
√

4nq − 1√
4πq−1

∑n
i=1

∑q
j=1 r

2
ij

.

Squaring, we find:

FORMULA B.2. For nq > 30, the endpoints of a (1 − α)100% confidence interval for the density λ are well-
aproximated by

C1 =

“
zα

2
+
√

4nq − 1
”2

4πq−1
Pn
i=1

Pq
j=1 r

2
ij

and C2 =

“
z1−α2 +

√
4nq − 1

”2

4πq−1
Pn
i=1

Pq
j=1 r

2
ij

.

For the point-centered quarter method where q = 4 we obtain

C1 =

“
zα

2
+
√

16n− 1
”2

π
Pn
i=1

P4
j=1 r

2
ij

and C2 =

“
z1−α2 +

√
16n− 1

”2

π
Pn
i=1

P4
j=1 r

2
ij

.

Note that the later formula above is Formula 5.2.
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Further Generalizations: Order Methods

Order methods describe the estimation of the density λ by measuring the distances from the sample
point to the first, second, third, etc. closest individuals. Note: The data collected during point-centered
quarter method sampling (as in Table 1) do not necessarily measure the first through fourth closest
individuals to the sample point because any two, three, or four closest individuals may lie in a single
quadrant or at least be spread among fewer than all four quadrants.

The derivation that follows is an adaptation of Moore (1954), Seber (1982), Eberhardt (1967), and
Morisita (1954). We continue to assume, as above, that the population is randomly distributed with
density λ so that the number of individuals x in a circle of radius r chosen at random has a Poisson
distribution

P (x) =
(λπr2)xe−λπr

2

x!
.

Let R(k) denote the distance to the kth nearest tree from a random sampling point. Then

P (R(k) ≤ r) = P (finding at least k individuals in a circle of area πr2)

=
∞∑
i=k

e−λπr
2

[(
λπr2

)i
i!

]
. (22)

Taking the derivative of (22), the corresponding pdf for r is

fk(r) =
∞∑
i=k

(
−2λπre−λπr

2

[(
λπr2

)i
i!

]
+ e−λπr

2

[
2iλπr

(
λπr2

)(i−1)

i!

])

= 2λπre−λπr
2
∞∑
i=k

(
−
(
λπr2

)i
i!

+

(
λπr2

)(i−1)

(i− 1)!

)

=
2λπre−λπr

2 (
λπr2

)(k−1)

(k − 1)!

=
2(λπ)kr2k−1e−λπr

2

(k − 1)!
, (23)

which generalizes (11). In other words, the probability that the kth closest tree to the sample point lies
in the interval between a and b is ∫ b

a

2(λπ)kr2k−1e−λπr
2

(k − 1)!
dr. (24)

If we use the substitution y = 2λπr2 and dy = 4λπr dr, then (24) becomes∫ 2λπb2

2λπa2

(
1
2

)k
yk−1e−y/2

(k − 1)!
dy.

In other words, the pdf for y is

gk(y) =

(
1
2

)k
yk−1e−y/2

(k − 1)!

and so it follows from (20) that
2λπR2

(k) ∼ χ
2
(2k). (25)

Now assume that n independent sample points are chosen at random. Similar to the derivation of
(19), we have that an unbiased estimate of the density is

λ̂ =
kn− 1

π
∑n
i=1R

2
(k)i

. (26)
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Moreover, from (25) it follows that

2λπ
n∑
i=1

R2
(k)i ∼ χ

2
(2kn). (27)

Consequently, a (1− α)100% confidence interval for λ is determined by the inequalities

χα
2 (2kn) < 2λπ

n∑
i=1

R2
(k)i < χ1−α2 (2kn).

Solving for λ, a (1− α)100% confidence interval is given by (C1, C2), where

C1 =
χα

2 (2kn)

2π
∑n
i=1R

2
(k)i

and C2 =
χ1−α2 (2kn)

2π
∑n
i=1R

2
(k)i

. (28)

A special case. Notice that when k = 1 only the nearest organism to the sample point is being
measured. This is the same as taking only q = 1 sector (the entire circle) in the two preceding sections.
In particular, when k = q = 1, the unbiased estimates for λ in (26) and (19) agree as do the confidence
interval limits in (28) and Formula B.1.

EXAMPLE B.2. Use the closest trees to the 15 sample points in Example 5.2 to estimate the density
and find a 95% confidence interval for this estimate.

SOLUTION. From Example 5.2 we have

Ri 1.2 0.7 2.3 1.0 0.9 0.7 0.7 1.1 1.0 0.7 1.0 0.6 0.2 1.1 1.2

πR2
(1)i

4.52 1.54 16.62 3.14 2.54 1.54 1.54 3.80 3.14 1.54 3.14 1.13 0.13 3.80 4.52

Check that π
P15
i=1 R

2
(1)i = 52.64. Since n = 15 and k = 1, then from (26)

λ̂ =
kn− 1

π
Pn
i=1 R

2
(1)i

=
1(15)− 1

52.64
= 0.2660 trees/m2

or 2660 trees/ha. From (28) we find

C1 =
χα

2 (2kn)

2π
Pn
i=1 R

2
(1)i

=
χ0.025(30)

2(52.64)
=

16.2

105.28
= 0.1596

and

C2 =
χ1−α2 (2kn)

2π
Pn
i=1 R

2
(1)i

=
χ0.975(30)

2(52.64)
=

47.0

105.28
= 0.4464.

This is equivalent to a confidence interval of (1596, 4464) trees/ha. With fewer estimates this confidence
interval is wider than the one originally calculated in Example 5.2.

Normal Approximation

For larger values of 2kn, one can use a normal approximation. In the case at hand, 2λπ
∑n
i=1R

2
(k)i ∼

χ2
(2kn). Adapting the argument that precedes Formula B.2 the endpoints for a (1 − α)100% confidence

interval for λ are determined as follows:

zα/2 <

√
2
(

2λπ
∑n
i=1R

2
(k)i

)
−
√

2(2kn)− 1 < z1−α/2

⇐⇒ zα/2 +
√

4kn− 1 <
√

4λπ
∑n
i=1R

2
(k)i < z1−α/2 +

√
4kn− 1

⇐⇒
zα/2 +

√
4kn− 1√

4π
∑n
i=1R

2
(k)i

<
√
λ <

z1−α/2 +
√

4kn− 1√
4π
∑n
i=1R

2
(k)i
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Squaring, we find that the endpoints of a (1− α)100% confidence interval for λ are

C1 =

(
zα/2 +

√
4kn− 1

)2
4π
∑n
i=1R

2
(k)i

and C2 =

(
z1−α/2 +

√
4kn− 1

)2
4π
∑n
i=1R

2
(k)i

. (29)

Typically, kn > 30 before one would use a normal approximation.
Again note that when k = q = 1, (29) and Formula B.2 agree. For comparison purposes only, we

now use (29) to determine a 95% confidence interval for the density in Example B.2. We obtain

C1 =

(
z0.025 +

√
4kn− 1

)2
4π
∑n
i=1R

2
(k)i

=

(
−1.96 +

√
60− 1

)2
4(52.64)

= 0.1554

C2 =

(
z0.975 +

√
4kn− 1

)2
4π
∑n
i=1R

2
(k)i

=

(
1.96 +

√
60− 1

)2
4(52.64)

= 0.4414,

or (1554, 4414) trees/ha. This is not that different from the interval calculated in Example B.2

Angle-Order Methods

The angle and order methods may be combined by dividing the region about each sampling point into
q equiangular sectors and recording the distance to the kth nearest individual in each sector. Morisita
(1957) seems to have been the first to propose such a method.6 Let R(k)ij denote the distance from the
ith sample point to the kth closest individual in the jth sector. Morisita (1957) actually proposed two
unbiased estimates of the density for this situation. The first (for k > 1) is

λ̂1 =
k − 1
πn

n∑
i=1

q∑
j=1

1
R2

(k)ij

. (30)

This estimate is discussed by Eberhardt (1967) and Seber (1982).
Morisita’s (1957) other angle-order density estimate is

λ̂2 =
kq − 1
πn

n∑
i=1

q∑q
j=1R

2
(k)ij

. (31)

Be careful to note the difference in order of operations (reciprocals and summations) in these two
estimates. In particular, note that

n∑
i=1

1∑q
j=1R

2
(k)ij

6=
n∑
i=1

q∑
j=1

1
R2

(k)ij

.

Notice that (31) is valid for q = 4 and k = 1 (which corresponds to the using data collected in the
‘standard’ point-centered quarter method) and in that case simplifies to

λ̂2 =
12
πn

n∑
i=1

1∑4
j=1R

2
ij

. (32)

This equation is different from the earlier biased estimate of λ for the point-centered quarter method in
(1) and the unbiased estimate in Formula 5.1. Equation (32) appears to have been rediscovered by Jost
(1993).

Given our previous work, it is relatively easy to derive (31) for the case k = 1, measuring the closest
organism to the sample point in each sector (quarter). The motivating idea is to estimate the density

6This paper is in Japanese with an English summary. A number of sources indicate that it is available as USDA Forest
Service translation: Number 11116, Washington, D.C. However, no one I was able to contact at the USDA was familiar
with the paper.

http://people.hws.edu/mitchell/PCQM.pdf Version 2.15



SECTION B: Technical Details 26

at each point along the transect separately and then average these estimates. As usual, the density is
measured by taking the reciprocal of the mean area occupied by organisms near each sample point. With
k = 1, the mean of the q estimates of the area occupied by an organism near the ith sample point is∑q

j=1 πq
−1R2

ij

q
.

The reciprocal gives an estimate of the density (near the ith point):

q

πq−1
∑q
j=1R

2
ij

.

Averaging all n density estimates along the transect, yields the estimate

1
n

n∑
i=1

q

πq−1
∑q
j=1R

2
ij

.

However, using (18), we find that

E

[
1
n

n∑
i=1

q

πq−1
∑q
j=1R

2
ij

]
=

1
n

n∑
i=1

E

[
q

πq−1
∑q
j=1R

2
ij

]

=
1
n

n∑
i=1

[∫ ∞
0

· · ·
∫ ∞

0

q

πq−1
∑q
j=1R

2
ij

(2λπq−1)q(Ri1 · · ·Riq)e−λπq
−1Pq

j=1 R
2
ij dRi1 · · · dRiq

]

=
1
n

n∑
i=1

λq

q − 1

=
λq

q − 1
,

which means that the estimate is biased. An unbiased estimate of the density is

λ̂ =
q − 1
q

[
1
n

n∑
i=1

q

πq−1
∑q
j=1R

2
ij

]
=
q − 1
n

n∑
i=1

q

π
∑q
j=1R

2
ij

.

This is the same as (31) with k = 1 or (32) with q = 4.

EXAMPLE B.3. If we use (32) and the data in Example 5.2 (where k = 1) we obtain

λ̂2 =
12

15π

15X
i=1

1P4
j=1 R

2
ij

= 0.2078 trees/m2. (33)

Table 12 compares this estimate to the estimates with the other applicable methods in this paper. In
short, though most estimates are similar, it is important to specify which formula one is using to estimate
density when the point-centered quarter method is employed.

Morisita (1957) suggests that the two estimates be averaged to form yet another density estimate

λ̂0 =
λ̂1 + λ̂2

2
(34)

and claims that all these estimates are “applicable to any kinds of patterns of spatial distribution of
individuals (k ≥ 3).” Having applied the methods to a number of artificial populations, Morisita (1957)
proposes the use of λ̂0 with p = 4 and n = 3 as a practical way of obtaining an accurate density estimate.
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TABLE 12. The various density estimates using the data in Example 5.2.

Equation Formula λ̂ Source

Equation (1) (biased) 1
r̄2

= 16n2“Pn
i=1

P4
j=1 Rij

”2 0.2205 Cottam, Curtis, and Hale (1953), Morisita (1954)

Formula 5.1
4(4n−1)

π
Pn
i=1

P4
j=1 R

2
ij

0.2161 Pollard (1971), Seber (1982)

Equation (26) kn−1
π
Pn
i=1 R

2
(k)i

0.2660 Pollard (1971)

Equation (32) 12
πn

Pn
i=1

1P4
j=1 R

2
ij

0.2078 Morisita, (1957)

Engeman et al. (1994) examined a large number of methods to estimate density7 including those
suggested above in (26), (30), and (31). Of the estimators discussed in this paper, they concluded that
the best performing ones were the angle-order methods with q = 4 (i.e., quarters) and k = 3 followed
by q = 4 and k = 2 and then the two order methods with k = 3 and then k = 2. However, notice that
the efficiency is decreased in the angle-order methods since in the first case 12 trees must be located at
each sample point and in the second case 8 trees.

C A Non-parametric Estimate

The distance method density estimates discussed so far have the disadvantage of assuming that the
distribution of plants in the area sampled is random. This assumption justifies the use of the Poisson
distribution in developing the various density estimates. However, many authors [e.g., see Engeman et
al. (1994)] suggest that plant distributions are seldom random and are often aggregated. In contrast,
the use of non-parametric statistics to develop a density estimate would require no assumption about
the underlying distribution of organisms.

Patil et al. (1979) and Patil et al. (1982) developed a distance-based, non-parametric estimate of
plant density. It is beyond the scope of this paper to derive these formulæ. The latter paper revises their
earlier work and the estimates we (which we state without proof) come from the suggested formulæ in
Patil et al. (1982).

Non-parametric Estimates

Data are collected as in the special case of the order method described above. That is, at each of the n
sample points along the transect, the distance to the closest organism is recorded (there are no quarters).
These n distances are then ordered from smallest to largest. Let R(k) denote the kth order statistic, i.e.,
the kth smallest such distance. Next, for any real number r, let [r] denote the greatest integer function,
i.e., the greatest integer less than or equal to r. Then

λ̂ =
n2/3 − 1
nπR2

([n2/3])

. (36)

An estimate of the variance is given by

Var(λ̂) =
λ̂2

n2/3
(37)

7A word of caution: In Engeman et al. (1994, pp. 1771, 1773), the formula (31) for Morisita’s second density estimate
using the angle-order method is given incorrectly (in the notation of this paper) as

[nq(kq − 1)/π] Σ 1/R2
(k)ij

. (35)

Based on (35), they then mistakenly write (32) as

[12n/π] Σ 1/R2
(1)ij

.

http://people.hws.edu/mitchell/PCQM.pdf Version 2.15



SECTION C: A Non-parametric Estimate 28

and so the the standard deviation is λ̂
n1/3 For large samples, a confidence interval is developed in the

usual way: The endpoints of a (1 − α)100% confidence interval for the density λ are well-aproximated
by

C1 = λ̂+
zα

2
λ̂

n1/3
and C2 = λ̂+

z1−α2 λ̂

n1/3
. (38)

EXAMPLE C.1. If we use (36), (37) and the data in Example B.2 which lists the distances to the closest
trees at n = 15 sample points, the ordered data are

R(k) 0.2 0.6 0.7 0.7 0.7 0.7 0.9 1.0 1.0 1.0 1.1 1.1 1.2 1.2 2.3

πR2
(k)

0.13 1.13 1.54 1.54 1.54 1.54 2.54 3.14 3.14 3.14 3.80 3.80 4.52 4.52 16.62

Since [n1/2] = [152/3] = [6.08] = 6, then R([152/3]) = R(6) = 0.7. Thus,

λ̂ =
n2/3 − 1

nπR2
([n2/3])

=
152/3 − 1

15(1.54)
= 0.2201 trees/m2.

Note that this estimate of λ compares favorably with those given by the parametric formulæ in Table 12
and in (33).

An estimate of the variance is given by

Var(λ̂) =
λ̂2

n2/3
=

(0.2201)2

151/3
= 0.0080

and for the standard deviation by

q
Var(λ̂) =

√
0.0800 = 0.0894. Though the sample size is not large,

we illustrate the calculation of a 95% confidence interval for λ.

C1 = λ̂+
z0.025λ̂

n1/3
= 0.2201− 1.96(0.0894) = 0.0449 trees/m2

and

C2 = λ̂+
z0.975λ̂

n1/4
= 0.2201 + 1.96(0.0894) = 0.3953 trees/m2.

This confidence interval is wider than the one calculated in Example B.2 using parametric methods. In
the discussion section of Patil et al. (1982), the authors note that the price for a robust density estimate
“is the considerable increase in variance as compared to a parametric estimator which assumes a specific
spatial distribution of plants.”

Truncated Sampling

For truncated sampling (i.e., when a consistent upper limit is placed on the search radius used about
each sample point), Patil et al. (1979) derived formulas for the density and its variance. Using these
formulas with the modifications in Patil et al. (1982) leads to the following. Let w be the upper limit for
the radius beyond which one does not search. Let n be the number of sample points and let n1 denote
the number of sample points with observations, i.e., points where the distance to the nearest organism
does not excced w. (So there are n0 = n − n1 sample points without observations.) The data are the
order statistics R(k), where k = 1, . . . , n1.

Then

λ̂ =
n1

n

 n
2/3
1 − 1

n1πR2

([n
2/3
1 ])

 . (39)

An estimate of the variance is given by

Var(λ̂t) =
λ̂2
t

n
2/3
1

+ λ̂2
t

(
1
n1
− 1
n

)(
1 +

1

n
2/3
1

)
. (40)

For large samples, the endpoints of a (1 − α)100% confidence interval for the density λ are well-
aproximated by

C1 = λ̂+ zα
2

√
Var(λ̂t) and C2 = λ̂+ z1−α2

√
Var(λ̂t). (41)
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EXAMPLE C.2. To illustrate these calculations return once more to the data in Example C.1. Suppose
that the students who collected the data only brought a 1 meter stick with them and so did not search for
trees beyond a meter from each sampling point. Then the data would consist of the n1 = 10 observations
that were no greater than 1.0 m. Since there were n = 15 sampling points and [102/3] = 4, using (39),
(40) we obtain

λ̂ =
n1

n

0@ n
2/3
1 − 1

n1πR2

([n
2/3
1 ])

1A =
10

15

 
102/3 − 1

10πR2
([4])

!
=

2

3

„
3.6416

10π(0.7)2

«
= 0.1577 trees/m2

and

Var(λ̂t) =
λ̂2
t

n
2/3
1

+ λ̂2
t

„
1

n1
− 1

n

« 
1 +

1

n
2/3
1

!

=
(0.1577)2

102/3
+ (0.1577)2

„
1

10
− 1

15

«„
1 +

1

102/3

«
= 0.0064.

The standard deviation is
√

0.0064 = 0.080, so a 95% confidence interval for λ using these data would be

C1 = λ̂+
z0.025λ̂

n1/3
= 0.1577− 1.96(0.080) = 0.0009 trees/m2

and

C2 = λ̂+
z0.975λ̂

n1/4
= 0.1577 + 1.96(0.080) = 0.3145 trees/m2.
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E Reference Tables

TABLE 13. The cumulative standard normal distribution.

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

−3.9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
−3.8 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

−3.7 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
−3.6 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

−3.5 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002

−3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002
−3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003

−3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005

−3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007
−3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010

−2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014

−2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
−2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026

−2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036

−2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048
−2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064

−2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084

−2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
−2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143

−2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183

−1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233

−1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294

−1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
−1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455

−1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559

−1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
−1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823

−1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985

−1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
−1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379

−0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611

−0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867

−0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
−0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451

−0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776

−0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121
−0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483

−0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
−0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247

−0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641
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TABLE 13. The cumulative standard normal distribution (continued).

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549

0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830

1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545

1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633

1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890

2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916

2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964

2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981

2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993

3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997

3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998
3.6 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

3.7 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

3.8 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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TABLE 14. Table of chi-square values for 95% confidence internals for n = 1 to 240 transect sample points.

n 8n χ2
0.025 χ2

0.975 n 8n χ2
0.025 χ2

0.975 n 8n χ2
0.025 χ2

0.975 n 8n χ2
0.025 χ2

0.975

1 8 2.18 17.53 61 488 428.68 551.10 121 968 883.67 1056.12 181 1448 1344.43 1555.36

2 16 6.91 28.85 62 496 436.18 559.60 122 976 891.32 1064.47 182 1456 1352.14 1563.65

3 24 12.40 39.36 63 504 443.69 568.10 123 984 898.96 1072.83 183 1464 1359.85 1571.94
4 32 18.29 49.48 64 512 451.20 576.59 124 992 906.61 1081.18 184 1472 1367.56 1580.23

5 40 24.43 59.34 65 520 458.71 585.08 125 1000 914.26 1089.53 185 1480 1375.27 1588.52

6 48 30.75 69.02 66 528 466.22 593.56 126 1008 921.91 1097.88 186 1488 1382.99 1596.80
7 56 37.21 78.57 67 536 473.74 602.04 127 1016 929.56 1106.23 187 1496 1390.70 1605.09

8 64 43.78 88.00 68 544 481.27 610.52 128 1024 937.21 1114.58 188 1504 1398.41 1613.38
9 72 50.43 97.35 69 552 488.79 619.00 129 1032 944.87 1122.92 189 1512 1406.13 1621.66

10 80 57.15 106.63 70 560 496.32 627.47 130 1040 952.52 1131.27 190 1520 1413.84 1629.95

11 88 63.94 115.84 71 568 503.85 635.93 131 1048 960.18 1139.61 191 1528 1421.56 1638.23

12 96 70.78 125.00 72 576 511.39 644.40 132 1056 967.84 1147.95 192 1536 1429.27 1646.51

13 104 77.67 134.11 73 584 518.93 652.86 133 1064 975.50 1156.29 193 1544 1436.99 1654.80
14 112 84.60 143.18 74 592 526.47 661.31 134 1072 983.16 1164.63 194 1552 1444.71 1663.08

15 120 91.57 152.21 75 600 534.02 669.77 135 1080 990.82 1172.97 195 1560 1452.43 1671.36

16 128 98.58 161.21 76 608 541.57 678.22 136 1088 998.48 1181.31 196 1568 1460.15 1679.64
17 136 105.61 170.18 77 616 549.12 686.67 137 1096 1006.15 1189.64 197 1576 1467.87 1687.92

18 144 112.67 179.11 78 624 556.67 695.11 138 1104 1013.81 1197.98 198 1584 1475.59 1696.20

19 152 119.76 188.03 79 632 564.23 703.56 139 1112 1021.48 1206.31 199 1592 1483.31 1704.48
20 160 126.87 196.92 80 640 571.79 712.00 140 1120 1029.15 1214.64 200 1600 1491.03 1712.75

21 168 134.00 205.78 81 648 579.35 720.43 141 1128 1036.82 1222.97 201 1608 1498.76 1721.03
22 176 141.16 214.63 82 656 586.92 728.87 142 1136 1044.49 1231.30 202 1616 1506.48 1729.31

23 184 148.33 223.46 83 664 594.49 737.30 143 1144 1052.16 1239.63 203 1624 1514.21 1737.58

24 192 155.52 232.27 84 672 602.06 745.73 144 1152 1059.83 1247.96 204 1632 1521.93 1745.86
25 200 162.73 241.06 85 680 609.63 754.16 145 1160 1067.50 1256.28 205 1640 1529.66 1754.13

26 208 169.95 249.83 86 688 617.21 762.58 146 1168 1075.18 1264.61 206 1648 1537.38 1762.41

27 216 177.19 258.60 87 696 624.79 771.00 147 1176 1082.86 1272.93 207 1656 1545.11 1770.68

28 224 184.44 267.35 88 704 632.37 779.42 148 1184 1090.53 1281.26 208 1664 1552.84 1778.95

29 232 191.71 276.08 89 712 639.95 787.84 149 1192 1098.21 1289.58 209 1672 1560.57 1787.22
30 240 198.98 284.80 90 720 647.54 796.25 150 1200 1105.89 1297.90 210 1680 1568.30 1795.49

31 248 206.27 293.51 91 728 655.12 804.66 151 1208 1113.57 1306.22 211 1688 1576.03 1803.76
32 256 213.57 302.21 92 736 662.71 813.07 152 1216 1121.25 1314.54 212 1696 1583.76 1812.03

33 264 220.89 310.90 93 744 670.31 821.48 153 1224 1128.93 1322.85 213 1704 1591.49 1820.30

34 272 228.21 319.58 94 752 677.90 829.89 154 1232 1136.62 1331.17 214 1712 1599.22 1828.57
35 280 235.54 328.25 95 760 685.50 838.29 155 1240 1144.30 1339.49 215 1720 1606.95 1836.84

36 288 242.88 336.90 96 768 693.10 846.69 156 1248 1151.99 1347.80 216 1728 1614.68 1845.10

37 296 250.23 345.55 97 776 700.70 855.09 157 1256 1159.67 1356.11 217 1736 1622.42 1853.37
38 304 257.59 354.19 98 784 708.30 863.49 158 1264 1167.36 1364.43 218 1744 1630.15 1861.64

39 312 264.96 362.83 99 792 715.91 871.88 159 1272 1175.05 1372.74 219 1752 1637.89 1869.90

40 320 272.34 371.45 100 800 723.51 880.28 160 1280 1182.74 1381.05 220 1760 1645.62 1878.17

41 328 279.72 380.07 101 808 731.12 888.67 161 1288 1190.43 1389.36 221 1768 1653.36 1886.43

42 336 287.11 388.68 102 816 738.73 897.06 162 1296 1198.12 1397.67 222 1776 1661.09 1894.69
43 344 294.51 397.28 103 824 746.35 905.44 163 1304 1205.81 1405.97 223 1784 1668.83 1902.96

44 352 301.92 405.87 104 832 753.96 913.83 164 1312 1213.51 1414.28 224 1792 1676.57 1911.22

45 360 309.33 414.46 105 840 761.58 922.21 165 1320 1221.20 1422.59 225 1800 1684.31 1919.48
46 368 316.75 423.04 106 848 769.19 930.59 166 1328 1228.90 1430.89 226 1808 1692.05 1927.74
47 376 324.17 431.62 107 856 776.81 938.97 167 1336 1236.59 1439.19 227 1816 1699.79 1936.00
48 384 331.60 440.18 108 864 784.44 947.35 168 1344 1244.29 1447.50 228 1824 1707.53 1944.26

49 392 339.04 448.75 109 872 792.06 955.73 169 1352 1251.99 1455.80 229 1832 1715.27 1952.52

50 400 346.48 457.31 110 880 799.69 964.10 170 1360 1259.69 1464.10 230 1840 1723.01 1960.78

51 408 353.93 465.86 111 888 807.31 972.48 171 1368 1267.39 1472.40 231 1848 1730.75 1969.04
52 416 361.38 474.40 112 896 814.94 980.85 172 1376 1275.09 1480.70 232 1856 1738.49 1977.30
53 424 368.84 482.95 113 904 822.57 989.22 173 1384 1282.79 1489.00 233 1864 1746.24 1985.55

54 432 376.31 491.48 114 912 830.20 997.58 174 1392 1290.49 1497.30 234 1872 1753.98 1993.81

55 440 383.77 500.01 115 920 837.84 1005.95 175 1400 1298.20 1505.59 235 1880 1761.72 2002.07
56 448 391.25 508.54 116 928 845.47 1014.32 176 1408 1305.90 1513.89 236 1888 1769.47 2010.32

57 456 398.73 517.06 117 936 853.11 1022.68 177 1416 1313.60 1522.18 237 1896 1777.21 2018.58
58 464 406.21 525.58 118 944 860.75 1031.04 178 1424 1321.31 1530.48 238 1904 1784.96 2026.83
59 472 413.70 534.09 119 952 868.39 1039.40 179 1432 1329.02 1538.77 239 1912 1792.70 2035.08

60 480 421.19 542.60 120 960 876.03 1047.76 180 1440 1336.72 1547.06 240 1920 1800.45 2043.34
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SECTION E: Reference Tables 34

TABLE 15. Table of 2025 Random Digits.

1 60082 84894 87580 22864 25331 54562 44686 40649 51483

2 22224 12938 28165 75805 68172 80673 17717 53236 68851

3 60285 32511 72012 82652 34342 78292 76543 20885 73190
4 88812 28748 21729 61863 68489 21822 56358 52501 89453

5 44576 55744 46672 14593 64783 37256 93146 88197 76405

6 28890 23523 93040 14691 29545 74989 95987 28891 21203
7 33248 36833 92299 67498 42777 26268 17589 92760 46627

8 06486 93538 12667 83088 04615 65794 66354 60781 84674

9 17475 62049 17297 39937 65459 75082 78141 12139 89131
10 15274 37983 98317 94216 67221 93399 85141 77546 67711

11 68879 51475 98386 75048 29674 75489 12385 05994 63650
12 83496 72984 23660 95481 60220 39281 58264 52018 27812

13 26744 36792 72255 76361 19424 98679 36742 18622 19857

14 62711 87719 67049 44892 52839 15490 46973 74915 46364
15 31414 85454 16495 40617 02926 45817 96356 52240 47116

16 34554 98863 34967 85013 27775 14375 89156 21919 76635

17 95462 96714 49735 87824 97419 33554 17134 49235 97579
18 48093 46752 93317 37664 45035 72983 80716 30263 64913

19 60969 95257 40274 60833 74771 73456 27750 10135 49899

20 01096 16749 75350 87705 72326 68094 23155 91453 74633

21 39062 42448 18988 93694 57797 34517 10748 74680 21585

22 88966 87249 77126 01433 94406 15789 07692 17558 33372

23 55472 54559 42499 98779 34668 77150 04338 70459 31650
24 77115 91315 70052 14534 76386 18211 42522 31774 52762

25 68296 65967 27859 36237 03758 02576 31417 79768 23853

26 11891 92132 43614 25173 37475 92684 07525 12754 52073
27 67845 41815 87539 63773 33269 96363 83893 13684 54758

28 80715 03333 36746 42279 63932 91413 13015 45479 96152
29 93614 88328 22103 21134 73295 22175 46254 11747 36284

30 28017 18124 61320 52542 35362 27681 58562 53691 96599

31 95114 73345 78448 17128 94266 82197 10938 42871 39309
32 29631 61790 17394 87012 80142 12916 43588 88044 07429
33 72439 22965 22452 89352 84598 40162 51112 99370 58994

34 43206 76531 23736 90099 16631 62425 23619 94864 28797
35 19266 29669 79345 01827 15147 85505 58666 84693 65570

36 95222 14122 54382 71115 93771 35510 79567 96455 67252

37 17310 48813 33458 54178 34773 29541 75989 11419 81253
38 72494 45082 88616 80699 59886 36329 69658 71891 03236

39 89818 68866 13858 32642 41924 08469 14327 84551 47068
40 73182 66270 93939 45159 28426 43253 42189 61174 77953

41 41648 15786 24517 80227 79184 72866 96071 36856 92714

42 86633 67816 43550 00765 88497 46434 10767 27709 14374
43 60762 91378 18649 96638 85675 33142 79869 18443 24879

44 29283 77878 61353 89214 72140 29236 11476 82552 47777

45 78114 48491 51326 68205 52576 54212 46363 61776 97791
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