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Abstract

Satellite sensors are well suited to monitoring changes on the Earth’s surface through provision of consistent and repeatable measurements at a
spatial scale appropriate for many processes causing change on the land surface. Here, we describe and test a new conceptual approach to change
detection of forests using a dense temporal stack of Landsat Thematic Mapper (TM) imagery. The central premise of the method is the recognition
that many phenomena associated with changes in land cover have distinctive temporal progressions both before and after the change event, and
that these lead to characteristic temporal signatures in spectral space. Rather than search for single change events between two dates of imagery,
we instead search for these idealized signatures in the entire temporal trajectory of spectral values. This trajectory-based change detection is
automated, requires no screening of non-forest area, and requires no metric-specific threshold development. Moreover, the method simultaneously
provides estimates of discontinuous phenomena (disturbance date and intensity) as well as continuous phenomena (post-disturbance regeneration).
We applied the method to a stack of 18 Landsat TM images for the 20-year period from 1984 to 2004. When compared with direct interpreter
delineation of disturbance events, the automated method accurately labeled year of disturbance with 90% overall accuracy in clear-cuts and with
77% accuracy in partial-cuts (thinnings). The primary source of error in the method was misregistration of images in the stack, suggesting that

higher accuracies are possible with better registration.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Satellite remote sensing has long been used as a means of
detecting and labeling changes in the condition of the land
surface over time (Coppin & Bauer, 1996; Mouat et al., 1993).
Satellite sensors are well-suited to this task because they
provide consistent and repeatable measurements at a spatial
scale appropriate for capturing the effects of many processes
that cause change, including natural and anthropogenic
disturbance (Jin & Sader, 2006; Muchoney & Haack, 1994;
Royle & Lathrop, 2002), climate change (Silapaswan et al.,
2001), and urbanization (Kwarteng & Chavez, 1998). Accord-
ingly, the field of change detection in remote sensing is rich with
case studies, methods, and applications in a wide range of
practical situations.
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Characterizing change in forested areas is of particular
interest. With large stores of carbon in live vegetation and soil,
forests play an important role in the global carbon cycle
(Houghton et al., 2001). Because the magnitude of carbon loss
during and after disturbance is large relative to the yearly carbon
flux in undisturbed forest stands, spatially integrated net carbon
flux in forests at any given time is largely determined by the
spatial extent of disturbance and by the rate of regrowth of
forested vegetation (Cohen et al., 1996; Harmon, 2001; Korner,
2003; Law et al., 2004). Land management in forests can also
affect biodiversity, hydrology, and economics (Bengtsson et al.,
2000; Brown et al., 2005; Drever et al., 2006; Gottschalk et al.,
2005; Jules et al., 1999; Kline et al., 2004; Miller et al., 2003;
Moore & Wondzell, 2005; Sallabanks et al., 2000; Stephens et
al., 2004; Sun et al., 2001; Thornton et al., 2000; Tyler &
Peterson, 2004).

As resource managers, policy makers, and the public at large
demand knowledge of forest change over increasingly large
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spatial and temporal extents, methodologies for change
detection and labeling must continue to improve. Two goals
for improvement stand out. First, change detection methods
must better characterize long term trends and baseline rates of
change. Long term datasets, such as that from the Landsat
family of sensors, have the potential to lay this foundation
(Cohen & Goward, 2004), but change detection methods that
can exploit this archive are generally lacking. Most change
detection methodologies documented in the literature focus on
only two images at a time (Coppin et al., 2004), preventing
extraction of longer-term trends. Second, change detection
techniques need to move toward automation if changes are to be
monitored over large areas. For two-date change detection, most
spectrally-based methods require user designation of a threshold
separating real change from spectral changes caused by
geometric misregistration, variability in illumination, and
vagaries of seasonality and image date (Lu et al., 2004). This

manual intervention adds significant cost to efforts to expand
change detection to large areas.

In this paper, we describe tests of a method that moves
towards automation in tracking long time series data. The
central premise of the method is the recognition that many
phenomena associated with changes in forests have distinctive
temporal progressions both before and after the change event,
and that these lead to characteristic temporal signatures in
spectral space. Rather than search for single change events
between two dates of imagery, we instead search for these
idealized signatures in the entire temporal trajectory of spectral
values. If an area fits the idealized trajectory according to a
simple least-squares measure of goodness of fit, it is likely to
have experienced the phenomenon described by that trajectory.
Because the entire trajectory is considered, the method can
utilize the depth of rich image archives, and because detection is
based on the fit of a curve, thresholding is based on a statistical
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Fig. 1. The Landsat TM scene from path 46 row 29 (46/29) was used for this study. The scene is located in Oregon, U.S.A., and is composed of nearly 75% private
lands and 25% public lands. Much of the central north—south running Willamette River Valley is in an agricultural land use.
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metric that is internally calibrated to each pixel, avoiding the
need for manual interpretation or intervention.

2. Methods
2.1. Data and study area

We focus on a series of Landsat Thematic Mapper (TM) and
Enhanced Thematic Mapper Plus (ETM+) images for a single
scene in western Oregon, U.S.A. The TM sensor was included
on both the Landsat 4 and 5 satellites, the former launched in
1984 and the latter in 1986 (Cohen & Goward, 2004). By
including two spectral bands in the short-wave infrared regions
and a single band in the thermal region, and by operating with a
nominal grain size of 30 m for the non-thermal region, these TM
sensors represented a significant improvement in information
content over the multispectral scanner (MSS) sensors that began
recording imagery in 1972. Improvements in radiometric
quality and the inclusion of a 15-m panchromatic band marked
the arrival of the ETM+ sensor in 1999. As a medium spatial
resolution sensor, all of the TM and ETM+ sensors are well-
suited for mapping changes in land cover caused by many
anthropogenic factors (Cohen & Goward, 2004; Coops et al.,
2007; Franklin et al., 2002).

Land cover and land management methods in the study area
are diverse. The central portion of the scene includes the
Willamette River Valley, a north—south running agricultural
zone planted in row and field crops, as well as in a wide array of
specialty crops and orchards (Oetter et al., 2000). Four distinct
urban areas in the Willamette Valley are fully included in the
scene (Albany, Corvallis, Eugene/Springfield, and Salem), with
some suburbs of the southern Portland metropolitan area
included at the northern edge of the scene (Fig. 1).

Conifer dominated forests occupy the eastern and western
portions of the scene and are the focus of the change detection.

Table 1

Dates of Landsat TM and ETM+ images used in the analysis

Date Type®
8/4/1984 ™
8/26/1986 ™
7/12/1987 ™
8/31/1988 ™
9/3/1989 ™
7/7/1991 ™
8/10/1992 ™
8/29/1993 ™
7/31/1994 ™
8/19/1995 ™
8/21/1996 ™
7/23/1997 ™
8/11/1998 ™
8/22/1999 ETM+
8/16/2000 ™
7/26/2001 ETM+
7/29/2002 ETM+
8/25/2003 ™
7/26/2004 ™

“TM: Landsat Thematic Mapper; ETM+: Enhanced Thematic Mapper Plus.
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Fig. 2. A conceptual flow of the competing models approach. For each pixel in
the image, band 5 reflectance (BSR) is extracted for all 19 years (dates shown in
Table 1). Four separate hypothesized models (described in Fig. 3) are then fit to
this data, first through an initial estimate of fitting parameters, and then through
non-linear iterative curve-fitting. After each of four models is fit to the data, the
model with the best fit is selected as describing the pixel, and its descriptive
parameter values added to a growing summary image.

Estimate initial
parameters for
four types

Determine best fit;
Calculate f-stat
and p-of-f

As reviewed in Healey et al. (2007), these and many other
temperate forests undergo a variety of silvicultural treatments,
including clear-cutting (complete or near-complete removal of
all trees in a stand), partial stand removal (resulting in patchy
residual tree islands), and thinning (removal of a portion of trees
throughout a stand). Ownership of lands in the footprint of the
scene is approximately 74% private and 26% public, with U.S.
federal government forests dominating the public ownership
portion.

2.2. Image preprocessing

Landsat TM images were acquired for Path 46 Row 29
(WRS 1I grid system) for the years between 1984 and 2004
(Table 1; see also Schroeder et al. (2006)). Acceptable images
were confined seasonally to the period between July 1 and
September 15, the period of Oregon’s dry season, and had
estimates of cloud cover area below 10% of the area of the
image. For 1985 and 1990, images in the Landsat archive
(http://earthexplorer.usgs.gov) had more than 40% of the area
completely cloud covered, and as such no images were used
from those two years.

Geometric and radiometric normalization are critical for any
change detection technique where spectral values are compared
across time (Garcia-Haro et al., 2001; Lu et al., 2004).
Schroeder et al. (2006) describe the steps used for geometric
and radiometric processing of these images. Briefly, a procedure
for automated detection of image tie points (Kennedy & Cohen,
2003) was used to identify >100 tie points between each scene
and the base scene, here the 1987 image, and then used in a


http://earthexplorer.usgs.gov

R.E. Kennedy et al. / Remote Sensing of Environment 110 (2007) 370-386 373

polynomial reprojection to align images across years (RMSE of
position generally <0.5 pixels for all scene pairs). All images
were then radiometrically normalized using the multivariate
alteration detection (MAD) algorithm of Canty et al. (2004),
which provides a quick and effective statistical approach to
relative normalization of satellite images (Schroeder et al.,
2000).

2.3. Fitting temporal trajectories

The overall process of fitting temporal trajectories is shown in
Fig. 2. For each pixel in the stack of geometrically and
radiometrically normalized images, the full 20-year time series
(1984-2004) of band 5 reflectance (B5R) is extracted. For each
of four hypothesized temporal trajectories (see below), initial
estimates of trajectory shape parameters are made, and then sent
to a fitting function that adjusts these initial parameters to find
the best fit of the hypothesized trajectory to the observed
trajectory. The discrepancy between the best fit hypothesized
and the observed trajectories is summarized in terms of a
standard f-statistic, and the probability of that f-statistic ( p-of-f')
is calculated. The model with the lowest p-value is selected and
written to an output image. Additionally, the parameters
describing that model are written to separate layers of the output
image, as are the statistics ( f~statistic and p-of-f") describing the
fit of the best model. The model parameters written to the output
image describe key aspects of the disturbance regime, including
year of disturbance, change in spectral value at disturbance (a
proxy for intensity of disturbance), and rate of recovery of
spectral values (a proxy for revegetation rate). This process is
repeated for every pixel in the image.
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Hypothesized trajectories were based on short-wave infrared
band reflectance (band 5 of TM and ETM+). The short-wave
infrared region has been increasingly recognized as a useful tool
in both characterizing vegetation and detecting changes in
forested regions (Brown et al., 2000; Chuvieco et al., 2004;
Healey et al., 2006; Trigg & Flasse, 2001) and is a key spectral
region for inferring severity of burns (van Wagtendonk et al.,
2004; White et al., 1996). In western Oregon, B5R is low in
mature forests and high in exposed soil. The contrast between
the near-infrared (TM band 4) and the short-wave infrared
bands (TM bands 5 and 7) is the core of the tasseled cap wetness
index (Crist, 1985), which has been shown to be useful in
mapping forest structure and condition in coniferous forests
(Cohen et al., 2001; Cohen & Spies, 1992; Healey et al., 2006;
Lefsky & Cohen, 2003; Wulder et al., 2005).

We hypothesized four trajectories of change in BSR: simple
disturbance, disturbance followed by revegetation, ongoing
revegetation, and revegetation to stable state (Fig. 3). By
developing appropriate functions to describe hypothesized
trajectories, the parameters describing those functions them-
selves capture the key characteristics of disturbance and
regrowth. Simple disturbance results in a stairstep function in
band 5 (Fig. 3a). Mature conifer forests have low B5R, but soil
and non-photosynthetic components of vegetation (bark,
branches) have high BSR. When conifer vegetation is removed
through disturbance, BSR jumps from an initially low value to a
high value, and, in the absence of subsequent revegetation,
remains high. The parameter values describing this shape are
the end year of the disturbance interval (parameter py), the pre-
disturbance mean reflectance (p;), and the post-disturbance

mean (p,).
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Fig. 3. A detailed view of fitted values from four pixels representing the four hypothesized models of disturbance or recovery. a) Simple disturbance. b) Disturbance
followed by exponential revegetation. ¢) Revegetation from disturbance prior to observation record. d) Revegetation from prior disturbance, reaching a stable point

during the observation period.



374 R.E. Kennedy et al. / Remote Sensing of Environment 110 (2007) 370-386

When disturbance is followed by revegetation, B5R initially
spikes, but decreases over time (Fig. 3b). The trajectory from
high to low B5R is presumed to follow an exponential decay
curve. Two parameters describing this trajectory are identical to
those from the simple disturbance: the pre-disturbance mean
reflectance p; and the year after disturbance p,. Parameters p,,
3, and p,4 describe the exponential function that captures return
of spectral values to lower B5R. The exponential function
considered here is:

s = (2= pa)-e ) + 4 (1)

where rys is the observed B5R, p3 is an exponential decay
constant, p, and p, are lower and upper bounds, respectively,
on the exponential function (in units of reflectance), and ¢ is the
time since disturbance (in years). The parameter p, is analogous
to the mean reflectance immediately after disturbance in the
simple disturbance function, while the parameter p, describes
the asymptotic level of reflectance if the exponential function
were to continue indefinitely (this value is not explicitly linked
with p;). The parameter p; describes the rate of decrease of
spectral reflectance from the high value p; to a value at infinity
P4. The higher the value of ps, the faster the inferred recovery of
vegetation. Units for p5 are ¢ . Solving for ¢, if p; were 0.25,
reflectance would recover half the spectral distance between p4
and p, in 2.77 years (¢=In(0.5)-(—p3 ")) and would recover
95% of that distance in 11.98 years. The exponential parameter
was constrained to range from 0 to 1.0. The use of the
exponential function by itself to model recovery rates from
spectral data has precedence (Viedma et al., 1997).

When disturbance happens before the first year of the record
(before 1984 for the image stack used in this study), the signal
of revegetation may still be evident, and thus the ongoing
“revegetation” temporal trajectory was developed (Fig. 3c). The
signal is that of exponential recovery alone, without an observed
disturbance event. Eq. (1) is used to describe this trajectory,
except that parameter meanings are altered, such that ¢
represents the time since the beginning of the record, and that
P> represents the reflectance for the first year of the record.

A fourth model builds on the ongoing revegetation trajectory,
but assumes that the reflectance stabilizes to an essentially
unchanging flat line (Fig. 3d). Eq. (1) is used as in the ongoing
revegetation trajectory, but an additional parameter is added that
corresponds to the year at which stable reflectance is achieved.

Once the four trajectories have been defined, the core of the
method is a nonlinear least-squares fit of each hypothesized
trajectory to the spectral trajectory observed in each pixel. For
fitting, we used MPFIT, an implementation of the Levenburg—
Marquardt algorithm adapted for IDL (Interactive Data
Language, ITT Visual Information Solutions, Inc.) by Craig
Markwardt from the NETLIB MINPACK-1 package. The code
is available from http://cow.physics.wisc.edu/~craigm/idl/idl.
html. The program allows the user to develop functions of any
arbitrary form that define how a set of arbitrary parameters
converts a set of X values into a set of Y'values. Initial estimates
of parameter values are sent to MPFIT, which returns the
adjusted parameter set that best fits the observed trajectory.

Initial estimates of the fitting parameters must be reasonable.
For the two disturbance trajectory types, the year of disturbance
is fixed at the point where the increase in band 5 reflectance
from one year to the next is greatest. For simple disturbance,
estimates of pre- and post-disturbance reflectance are taken as
arithmetic means of reflectance in the years before and after the
estimated year of disturbance. For all three trajectories
involving exponential decay, the initial estimate of the decay
constant is calculated as the difference of the log of the
reflectance immediately after disturbance (or at the beginning of
the record for ongoing revegetation and the revegetation to
stability types) and the log of the reflectance in the following
year. If this value is not mathematically defined, an initial
estimate of zero is used. Bounding constraints of the
exponential functions are reflectance at the year of disturbance
(for py) and zero (for p;). Finally, for the “revegetation to
stability” type, initial estimates of stability level and onset of
stability were estimated as the reflectance at the end of the
record and the last year of the record, respectively.

The next phase is that of competing models. For each of the
four hypothesized trajectories of change, initial estimates of the
parameters are sent to the fitting function, which adjusts them until
the best fit is found for that type. Predicted values are calculated
and compared with observed values in an analysis of variance
paradigm (Wackerly et al., 1996). A standard f-statistic (mean
square errofy,qe/Mean Square errolyegiqua) 1S calculated, with
degrees of freedom for the model equal to the number of
parameters in the fitting model and for the residual equal to
the number of years minus the number of parameters minus 1.
High f-values indicate that the hypothesized trajectory de-
scribes the observed trajectory well. The probability of the
calculated f~value (p-of-f’) being due to chance is taken from
standard f-statistic tables, with low p-of-f indicating better
agreement between the hypothesized trajectory and the observed
trajectory. This process is repeated for each of the four
hypothesized trajectories. The four types are considered compet-
ing models for the observed conditions. The model with the lowest
p-of-f value wins. The parameters of the winning model fully
describe the disturbance and recovery dynamics for the pixel, and
are written as separate layers to the growing summary image.
Layers in the output image are described in Table 2.

No explicit model of “no change” is developed. Rather, the
no-change condition is the implicit null-hypothesis against

Table 2
Layers in the summary image created in the competing models phase

Layer Description

Trajectory type (1 through 4)

End of disturbance interval (1986 through 2004)

Spectral change at disturbance (proxy for disturbance intensity)
Decay constant in exponential revegetation (proxy for revegetation rate)
Recovery transition year (for recovery-to-stability type only)
[-statistic of winning model

Mean spectral value before disturbance

p-off

Mean square error of model

Mean square error of residuals

Spectral value at infinity (for exponential models only)

— = 0 00 N L B~ LN~

—_ o
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Table 3
Types of cover change interpreted directly from year-to-year difference in
tasseled-cap spectral color

Type Inferred Starting Visual description Ending Visual
change condition condition  description
1 Clear-cut  Conifer Light to dark Soil Bright or dark
conifer blue/cyan red
2 Partial cut Conifer Light to dark Any non- Any orange,
conifer blue/cyan conifer red, or yellow,
mottled or
smooth
3 Treatment Any non- Any orange, red, Soil Bright or dark
(herbicide, conifer or yellow, mottled red
fire) or smooth

which all four models are compared. Although each pixel is
assigned the model with the lowest p-of-f-statistic, pixels
without change will have high p-of-f values even for that best
model. Thus, no-change pixels are simply those pixels where
the best model has a p-of-f'value higher than 0.05.

2.4. Application of trajectory-based change detection to image
stack

Temporal curve-fitting was applied to the stack of Landsat TM
band 5 images listed in Table 1, resulting in a summary image
with the 11 layers listed in Table 2. Although all images in the
stack were relatively free of clouds, small areas of residual
“popcorn” cumulus clouds remained. For the years 1984, 1986,
1989, 1991, 1992, 1993, 1997, and 2003, cloud masks were
developed using post-classification labeling of a simple unsuper-
vised classification of tasseled cap transformations of the images
(Crist, 1985). During curve fitting of each pixel, only values from
non-clouded years were considered. In the summary image, pixels
with a p-of-f'value less than 0.05 were subsequently labeled as
“change.” Note that this filtering on the p-of-f'value was the only
filtering conducted on the algorithm output; no filtering of urban,
agricultural, or waterbody areas was conducted.

2.5. Validation

Ideally, any map based on remotely-sensed imagery should
be validated with an entirely independent dataset, usually one
step “closer” to reality than the imagery used to make the map
(Congalton & Green, 1999). Validation of change-detection
maps is often more challenging than is validation of single-date
maps, because independent reference sources must be available
for both ends of the change interval, and because the range of
potential changes is often much greater than the range of classes
in single-date maps (Coops et al., 2007). This is particularly true
in this study, where changes must be validated for near-yearly
periods spanning two decades. Therefore, we chose two
complementary approaches to evaluate the performance of the
trajectory-based change detection algorithms.

Because no independent datasets were available for every year
of the record for the entire area, the only consistent source for
evaluation was the imagery itself. Cohen et al. (1998) showed that

direct human interpretation of tasseled-cap transformed Landsat
imagery (Crist & Cicone, 1984) was as accurate for mapping forest
clear-cuts as both independent photo and field-based datasets, even
though the imagery used for interpretation was the same source
used to build the change-detection map. The same approach was
used in a broader forest-disturbance project described in Healey
et al. (2005). Mapping of forest disturbance through direct image
interpretation allows incorporation of spatial pattern and geograph-
ic context in the decision-making process, and these are not easily
incorporated into automated algorithms. In essence, the error matrix
that compares human interpretation of satellite imagery with results
of an automated algorithm is a test of agreement between that
algorithm and the model of reality used by the human interpreter.
Because a primary goal of this study was to develop robust
algorithms that eliminated manual intervention, such a comparison
is appropriate as one means of evaluating the method. Therefore,
the accuracy assessment approach of Cohen et al. (1998) and
Healey et al. (2005) formed the basis for our first type of validation.

Two improvements on the approach of Cohen et al. (1998)
were implemented in this study. Because change occurs rarely
in any given time interval, most of the images are not changed,
making detection of false negatives statistically rare when the
model output of change is used to draw samples (Morisette &
Khorram, 2000). To avoid this problem, we fully interpreted 3
by 3 km square areas without reference to the algorithm change
maps. Samples of change and no-change could then be drawn in
a balanced design. A second improvement relates to labeling the
observed change. Disturbance type was labeled using interpre-
tation rules shown in Table 3. Clear-cuts in conifer forest (Type
1 disturbance) were labeled as distinct from partial cuts in
conifer forests (Type 2 disturbance) and from vegetation
removal in non-conifer conditions caused by post-harvest
treatments such as fire or herbicide application (Type 3 distur-
bance). For each disturbance label, the interpreter quantified a
confidence score based on agreement with five “confidence
statements” shown in Table 4. The first two statements corres-
pond directly to the spectral properties before and after
disturbance, while the latter three statements correspond to
spatial and temporal context. A key consideration is whether the
land use around a patch is appropriate for the type of change
observed. For example, forest disturbance can be more confi-
dently labeled if it occurs in a land use system of active forestry
rather than a land use system of crop agriculture. A single

Table 4
Rules for assigning interpreter confidence scores to digitized disturbance
polygons

Confidence statement

Component score range*

“Starting condition is spectrally unambiguous” 0.
“Ending condition is spectrally unambiguous” 0
“Land use around the patch is appropriate” 0,
“Shape and size of patch is appropriate” 0
“Temporal trajectory after disturbance is appropriate” 0.
Range of possible scores, 7 is best 0

* Each confidence statement is evaluated for each disturbance polygon, with
the total score being the total of component scores across all confidence
statements.
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interpreter digitized all polygons, with spot quality checking by
a second interpreter.

All interpretation occurred within “interpretation boxes”
selected from a regular 3 km by 3 km grid overlain on the image
area. The population of grid cells fully contained in the area
common to all images in the stack (n=2803) was ordered into a
random list. Interpretation occurred on boxes in sequential order
from this random list until several examples of cuts in each year
were captured and before project budget was overstepped. In the
end, 67 “interpretation boxes” were interpreted (Fig. 4).

For the entire 9 km” area in each of these interpretation
boxes, polygons were screen-digitized around all forest
disturbances in all years. Each year of imagery was loaded
into an image viewing platform, as well as year-to-year
difference images. Difference images were used as an initial
visual guide for identifying potential disturbance, but the final
interpretation and digitization of the disturbed area was based
on the original tasseled cap imagery. Each disturbance patch
was attributed with disturbance year, disturbance type, and
interpreter confidence score. With 67 interpretation boxes
covering 9 km? each for 19 separate image years, 11,457 km?
of imagery was interpreted.

67 interpretation boxes randomly
selected from a grid of 2,803
3-by- 3 km boxes

-
o
|
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areas of disturbance, attributed with year of
disturbance, type, and interpretation
confidence score (0-7)

Fig. 4. The grid of potential sample plots within the footprint of Landsat TM
scene 46/29, with 67 randomly selected plots used for on-screen digitized shown
in shaded tone. Each plot was 3 by 3 km in size. Within each 3 by 3-km box, all
disturbances noted by direct interpretation of tasseled-cap imagery were
digitized and labeled according to disturbance year, type, and interpreter
confidence in change label.

The screen digitized disturbance polygons formed one
validation dataset for accuracy assessment. Polygons were
converted to a raster layer with 30 m cell size labeled with the
year of disturbance. Within the area covered by disturbed-area
polygons, 500 samples were selected. Selection for each sample
began with a single randomly seeded point, around which a 9-
pixel contiguous region was grown (9 pixels=0.81 ha), with the
constraint that all 9 pixels remain within the change polygon.
This was the first sample point. A second seed point was
randomly chosen and a 9-pixel area grown around it, with
additional constraint that its boundaries be no closer than three
pixels from the existing sample, to limit the effects of spatial
autocorrelation among samples. This continued until 500
samples were selected. An identical process was applied to
the areas not labeled as change by the interpreter, inferred to be
“no-change,” resulting in 500 no-change samples. These 1000
change/no-change samples were then compared to the year-of-
disturbance layer from the summary image created by the
trajectory-fitting algorithms. A sample was labeled “correct” if
the majority of the 9 pixels in the human-interpreted map were
labeled the same in the algorithm-derived image. Errors were
tabulated for both the change/no-change label and for the year
of disturbance label. Standard error matrices and summary
statistics were then calculated (Congalton & Green, 1999).
Accuracy assessment was conducted on the entire set of inter-
preted disturbances, and then repeated separately for distur-
bances labeled as Type 1 and Type 2 (Table 3).

In addition to calculating error matrices at the 9-pixel (0.81 ha,
i.e. plot) level, agreement between interpreter and algorithm was
evaluated at the patch level. First, the year of disturbance layer
from the algorithm summary image was filtered to a minimum
mapping unit of 9 pixels. Pixels from this filtered image were then
counted within each of the 829 screen-digitized polygons. The
algorithm was considered accurate for a patch if more than half of
the screen-digitized area of the patch was in agreement. The plot
level and patch level comparisons between the algorithm and the
human interpretation of the imagery were the first form of
evaluation of the method.

The second form of evaluation of the method used digital
orthophoto quads (DOQs) to evaluate change detection maps for
one time period in the 20-year record. While not as temporally
dense as the evaluation based on yearly imagery, this method
could be considered a traditional accuracy assessment because
the source was entirely independent of the imagery used to build
the change detection maps, and was an order of magnitude finer
spatial resolution than the Landsat imagery. For 20 interpretation
boxes selected at random from the 67 boxes described above,
DOQs for the years 1995 and 2000 were acquired from the State
of Oregon Geospatial Enterprise Office (http://www.oregon.
2ov/DAS/EISPD/GEO/data/doq.sthml) and used for interpreta-
tion. DOQs were black and white with a nominal spatial grain of
1 m. All removals of forest between 1995 and 2000 were screen-
digitized based on visual interpretation of the DOQs for the full
3 km by 3 km area, and were then labeled using the same three
types shown in Table 3. The fine grain of the photos allowed
interpretation based on texture and land-use labeling not
possible with the satellite imagery alone. Polygons digitized
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from the DOQs were compared for agreement with polygons
digitized from the satellite imagery alone, to provide a sense for
the utility of the satellite-interpreted dataset for time periods not
covered by the DOQs. Polygons from the DOQ interpretation
were also compared for agreement directly with the trajectory-
based change detection map.

3. Results
3.1. Interpretation

Within the 67 randomly distributed 9-km? interpretation
boxes, 829 patches of disturbance were located and digitized
from the tasseled-cap imagery. The first noted disturbance was
Type 1 (clear-cut) in 503 patches and Type 2 (thinning/partial
cut) in 312 patches. Confidence scores generally ranged from
five to seven, with 700 patches having confidence scores of six
or seven. The minimum, median, and maximum patch digitized
patch sizes were 0.2, 5.29, and 231.7 ha, respectively. Because
patch boundaries were truncated at the edge of interpretation
boxes, it is possible that digitized patches may be smaller than
the actual size of the disturbed area, and thus these size
estimates cannot be used to characterize average patch sizes for
the study area.

Within the area of the 20 interpretation boxes randomly
selected for DOQ-based validation, 160 distinct polygons of

End year of
disturbance interval

forest disturbance were located. Use of the high-resolution
DOQ allowed capture of events with much smaller size than
possible with the direct interpretation of the satellite imagery.
The minimum, median and maximum patch size were 0.056,
1.51, and 78.1 ha respectively. To provide an indication of the
relative size of patches digitized from the DOQs and the satellite
imagery, 129 of the 160 DOQ-digitized polygons were smaller
than 5.29 ha, the median size of polygons digitized from the
satellite imagery.

3.2. Trajectory-based change detection

The trajectory-based change detection resulted in a summary
image whose layers corresponded to fitting parameters for those
pixels whose trajectory matched one of the four hypothesized
trajectories at the p=0.05 level or better. Figs. 5 and 6 illustrate
how the layers corresponding to end-year of disturbance
interval and to disturbance intensity compared visually with
interpreter digitized polygons.

3.3. Plot level agreement

At the plot level (9-pixel plots), overall change/no-change
agreement between the algorithm and the interpreter was 90%,
with a kappa value of 0.72 (n=1000, Table 5). Overall agreement
on year of disturbance was 84%, with a kappa value of 0.77
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Fig. 5. A comparison of end-year of disturbance interval labeled by the interpreter and by the trajectory-based change detection algorithm. Shown are three of the 67
interpreted sample plots from Fig. 4. Algorithm-based images have been filtered to a minimum map unit of 9 pixels (0.81 ha). For each image pair, the left-hand image
is from direct interpreter digitization and the right-hand image is from automated curve-fitting algorithms.
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Fig. 6. A comparison of disturbance type (Type 1 = clear-cut, Type 2 = partial cut) labeled by the interpreter against disturbance intensity reported by the trajectory-
based change detection algorithm, for three other interpretation boxes. Note that patches labeled “Type 2” by the interpreter were reported to have lower disturbance
intensity by the algorithm. Algorithm-based images have been filtered to a minimum mapping unit of 9 pixels (0.81 ha).

(n=1000, Table 6). These values represent accuracies for plots
distributed across the entire image, regardless of cover type,
location, interpreted disturbance type or confidence. When
considering only those patches where interpreter confidence
was high (score of 6 or 7), overall agreement was 88% with a
kappa value of 0.84 (n=1000, data not shown). When only clear-
cuts were considered (at all confidence levels), overall agreement
rose to 91% with a kappa value of 0.87 (n=1000, Table 7). When
only thinnings were considered (Type 2), overall accuracy of year
of disturbance was 74% with a kappa coefficient of 0.60 (n=500,
Table 8).

3.4. Patch level error agreement

Patch level analysis allowed exploration of the causes of
disagreement between the human interpretation and the algo-
rithm. At the patch level, 70% of interpreted patches were labeled
correctly by the algorithm in a majority of pixels. Of the 247
patches where the algorithm did not correctly capture change in a
majority of pixels, 55 patches were randomly chosen for
evaluation. For each patch, an assessment was made of the
cause of the omission. In 30 of the 55 error patches (55%), the
algorithm detected the disturbance event, but did not label
enough of the interpreter-labeled patch as disturbed because
geometric misregistration of images within the image stack

caused an elimination of the disturbance signal at the patch edge.
In 15 of the patches where the algorithm’s label disagreed with
the interpreter (27%), the algorithm appeared to have failed,
either because the patch was disturbed twice, was disturbed too
subtly to be captured, was disturbed from a bright condition to
another bright condition, was treated silviculturally after the
disturbance, or was in topographic shadow after disturbance. In
the 10 remaining patches, spectral change was ambiguous and
may have been interpreted incorrectly (as determined by a second
independent interpreter). Phenological changes between years
were the primary source of potential confusion.

Table 5
Plot-level accuracy of trajectory-based change detection
Interpreted Users
No change Change accuracy
Algorithm
No change 455 97 0.82
Change 45 403 0.90
Producers accuracy 0.91 0.81
Overall users accuracy 0.86 Overall accuracy 0.86
Overall producers accuracy 0.86 Kappa coefficient 0.72

* Plots are 9-pixel contiguous blobs randomly distributed in equal counts in
interpreted change and no-change areas.
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Table 6
Plot-based agreement between interpreted and algorithm-derived labeling of disturbance year for all disturbances

Interpreted Users accuracy

NC* 1986 1987 1988 1989 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

Algorithm

NC* 471 14 8 7 11 17 13 3 7 1 0 2 5 2 3 2 6 1 2 0.82
1986 1 320 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.94
1987 3 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.87
1988 3 0 0 36 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.90
1989 0 0 0 1 240 1 0 0 0 0 0 0 0 0 0 0 0 0 0.92
1991 1 0 0 0 0 32 0 0 0 0 1 0 0 0 0 0 0 0 0 0.94
1992 6 0 0 0 0 0 22 0 0 0 0 0 0 0 0 0 0 0 0 0.79
1993 1 0 0 0 0 0 1 13 0 0 1 0 0 0 0 0 0 0 0 0.81
1994 1 0 1 0 0 0 0 0 17 0 0 0 0 0 0 0 0 0 0 0.89
1995 1 0 0 0 0 0 1 0 3 240 0 0 0 0 0 0 0 0 0.83
1996 3 2 0 0 0 0 0 0 1 1 9 0 0 0 0 0 0 0 0 0.73
1997 5 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0.64
1998 4 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0.75
1999 1 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0.95
2000 1 0 0 0 0 0 0 0 0 0 0 0 0 0 27 3 0 0 0 0.87
2001 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 16 0 0 0 0.84
2002 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 12 0 0 0.92
2003 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 10 0 0.91
2004 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 25 0.96
Producers 0.94 0.65 0.69 0.80 0.67 0.65 058 0.81 0.61 092 090 082 071 0.83 0.87 073 0.67 091 0.93

accuracy
Opverall users accuracy 0.86 Opverall accuracy 0.84
Overall producers accuracy 0.77 Kappa coefficient 0.77

* NC = No change.
Table 7
Plot-based agreement between interpreted and algorithm-derived labeling of disturbance year for Type 1 disturbances (clear-cuts) only
Interpreted Users Accuracy
NC* 1986 1987 1988 1989 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

Algorithm

NC* 471 11 4 2 1 6 2 0 2 2 1 1 0 0 2 0 0 0 2 0.93
1986 4 35 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0.88
1987 4 2 30 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.81
1988 3 0 0 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.92
1989 0 0 0 0 20 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0.95
1991 2 1 0 0 0 55 0 0 0 0 0 0 0 0 0 0 0 0 0 0.95
1992 4 0 0 0 0 0 22 0 0 0 0 0 0 0 0 0 0 0 0 0.85
1993 2 0 0 0 0 0 1 18 0 0 0 0 0 0 0 0 0 0 0 0.86
1994 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 1.00
1995 0 0 0 0 0 0 0 0 0 26 0 0 0 0 0 0 0 0 0 1.00
1996 2 0 0 0 0 0 0 0 1 0 23 0 0 0 0 1 0 0 0 0.85
1997 6 0 0 0 0 0 0 0 0 0 1 13 0 0 0 0 0 0 0 0.65
1998 2 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0.78
1999 2 0 0 0 0 0 2 0 0 0 0 0 0 21 0 0 0 0 0 0.84
2000 2 0 0 0 0 0 0 0 0 0 0 0 0 0 43 5 1 0 0 0.84
2001 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0.86
2002 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 0 0 0.95
2003 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 0 0.95
2004 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 29 088
Producers 092 0.71 0.88 092 095 089 081 1.00 070 093 092 093 1.00 1.00 096 0.63 0.95 0.90 0.94

accuracy
Overall users accuracy 0.88 Overall accuracy 0.91
Overall producers accuracy 0.89 Kappa coefficient 0.87

* NC = No change.
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Plot-based agreement between interpreted and algorithm-derived labeling of disturbance year for Type 2 disturbances (thinning) only

Interpreted Users Accuracy
NC* 1986 1987 1988 1989 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

Algorithm

NC* 187 12 3 11 8 9 9 1 5 0 0 4 4 7 0 1 0 1 3 0.71
1986 1 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.95
1987 2 0 4 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0.50
1988 0 0 0 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.00
1989 1 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.86
1991 1 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0.88
1992 4 1 0 0 1 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0.50
1993 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0.67
1994 0 0 0 0 0 0 2 0 7 0 0 0 0 0 0 0 0 0 0 0.78
1995 0 0 0 0 0 0 1 0 0 5 0 0 0 0 0 0 0 0 0 0.83
1996 1 0 0 0 0 0 0 1 0 0 5 0 0 0 0 0 0 0 0 0.71
1997 1 0 0 0 0 0 0 0 0 1 0 4 0 0 0 0 0 0 0 0.67
1998 1 0 0 0 0 0 0 0 1 0 0 0 4 0 0 0 0 0 0 0.67
1999 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1.00
2000 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0.67
2001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 8 0 0 0 0.89
2002 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1.00
2003 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1.00
2004 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0.75
Producers 0.94 0.59 0.57 0.65 0.40 044 032 050 054 083 1.00 050 0.50 0.11 0.67 0.80 1.00 0.67 0.50

accuracy
Overall users accuracy 0.79 Overall accuracy 0.74
Overall producers accuracy 0.61 Kappa coefficient 0.60

* NC = No change.

3.5. DOQ-based error analysis

Direct interpretation of the DOQs allowed evaluation of the
efficacy of both the trajectory-based change detection approach
and the direct interpretation of the satellite imagery for
validation. Direct interpretation of the satellite imagery was
used for validation by Cohen et al. (1998) for clear-cuts greater
than 2 ha in size. Of the 160 polygons digitized from the DOQs,
only 49 were labeled clear-cut (Type 1) and of size greater than
2 ha. Direct interpretation of the imagery correctly captured
79.5% of these events. Of the 10 events not captured, re-
evaluation of the imagery by a second interpreter suggested that
in only five cases did the interpreter miss an obvious event. In
the other five cases, spectral changes were ambiguous (not
separable from natural or phenological variation) or were
nestled within agricultural areas where year-to-year variability
in spectral condition makes distinction of forest change
difficult. When the size threshold was lowered from 2 ha to
the 9 pixel area (0.81 ha), satellite interpretation accuracy
dropped to 69.4%, with a similar proportion of the missed areas
attributable to interpreter omission and the remainder to spectral
ambiguity, small patch size, misregistration of the imagery, and
confusion in agricultural zones. When all types of cut (Types 1,
2 or 3) greater than 2 ha in size were considered, interpretation
accuracy was 60.8%.

Comparison of the DOQ validation with the outputs from the
trajectory-based change detection approach was also conducted.
The trajectory-based change detection approach correctly
captured 85.7% of the Type 1 cuts larger than 2 ha in size and
80.6% of'the Type 1 cuts larger than 9 pixels in size, rates slightly

better in both categories than achieved with the direct
interpretation of the imagery. For all types of cut (Types 1, 2
or 3), agreement was 71.0%, again greater than the agreement
noted from direct interpretation of the imagery.

4. Discussion

Because of their consistent repeat measurement capabilities,
satellite sensors are well suited to the detection of changes in the
land surface. While most methods of change detection have
focused on changes between satellite images from two dates
(Coppin et al., 2004; Coppin & Bauer, 1996; Lu et al., 2004;
Mas, 1999), the growing temporal depth of the medium spatial
resolution satellite record provides an opportunity to develop
richer algorithms to examine change across a sequence of
images at a grain size appropriate for monitoring many important
land surface dynamics. In this paper, we described one such
algorithm and tested its ability to detect and label disturbance in
the conifer forests of western Oregon, U.S.A.

Although inherently a change detection methodology, the
method distinguishes itself for its utilization of the full temporal
record — both times of relative stasis as well times of change — to
better detect and more fully characterize land surface dynamics. As
is typical of change detection methods, our approach labels when
and where forest disturbances occurred, but it also simultaneously
characterizes disturbance intensity and, where appropriate,
recovery rate. Moreover, areas that are recovering from prior
disturbance are also captured. In a sense, the method extracts from
the Landsat record latent change detection information that could
not be utilized without Landsat’s temporal depth.
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The method relies on good radiometric normalization,
geometric registration, and cloud screening, as do most change
detection approaches (Lu et al., 2004). The importance of
geometric registration is amplified when examining trends
across a stack of images, as geometric misregistration errors are
compounded (Viedma et al., 1997). The geometric transforma-
tions used on the images in this study were scene wide
polynomial equations developed from image tie points.
Although the scene wide geometric error was usually less
than 0.5 pixels, the error at any single point in the scene can be
more or less. Visual estimation of misregistration in our image
stack suggested that local shifts of up to two pixels occurred in
some years of imagery, and this had a significant effect on
results at the patch level, as noted above. Misregistration was
estimated to cause half of the patch level error in the algorithm.
Sensitivity to misregistration can be considered a weakness of
the method, but fortunately misregistration can largely be
overcome with more sophisticated or computer intensive
approaches (Kennedy & Cohen, 2003). In addition to requiring
appropriate geometric registration, the method also benefits
from robust cloud masking, as clouds cause sharp increases in
band 5 that mimic increases seen with cutting. The temporal
curve-fitting approach could itself be used to develop cloud
masks, but in practice cloud masking is more efficiently
achieved with multi-spectral classifications separately for each
image year.

Three drawbacks deserve mention. First, the method is
extremely computer intensive, taking days to process a single
stack of images on a 2006-era computer (single processor PC
with 1 Gb of RAM). Second, the method only functions if the
observed trajectory matches one of the hypothesized trajecto-
ries. Pixels experiencing trajectories other than those hypoth-
esized will not be captured (as occurred in a subset of the 56
error patches evaluated here). The largest challenge in many
ecosystems, however, will be constructing an appropriately
dense stack of Landsat imagery. In some ecoregions, it is
necessary to composite multiple dates and years of imagery to
obtain sufficient cloud free pixel counts to conduct a simple
two-date change analysis (Olthof et al., 2004), suggesting that a
dense time series may not be feasible. In our system, images
with low percentage cloud cover (i.e.<10%) were available for
nearly every year in the record. It has been shown in studies
using other multiyear approaches that accuracy of change
detection diminishes as the change interval increases, and this
effect is expected to apply to this method as well (Healey et al.,
2005; Lunetta et al., 2004; Wulder et al., 2005). Thus, if a dense
time series cannot be constructed, the method may not detect
change any more accurately than existing methods (although it
would presumably still be valuable for its simultaneous
description of intensity and recovery).

Despite the challenges in using multitemporal datasets, they
have been the focus of substantial prior research. Examination of
the temporal trends in AVHRR (Advanced Very High Resolution
Radiometer) data has a long history (Eidenshenk, 1992).
Multitemporal data have been used both in classification and
change detection. For example, Lu et al. (2003) used the distinc-
tive temporal signals of different vegetation types to decompose

an AVHRR trajectory into woody and herbaceous components.
As with our approach, the information content lay in the temporal
trajectory, but the goal was classification rather than change
detection. In the case of Lambin and Strahler (1994), pixels were
described as a multidimensional vector of temporal AVHRR data,
and then these vectors compared between two years. Although the
approach took advantage of multitemporal data, the change
detection was essentially a comparison across two years. The
approach of Potter et al. (2005) is conceptually close to ours. They
examined the temporal signal of multiple years of AVHRR data,
and labeled pixels as changed when they deviated beyond the
statistical norm of the series. Like our approach, their method
allowed capture of subtle and ephemeral disturbance events using
a statistical threshold disconnected from the original units of
measurement.

Multiyear datasets of higher resolution data have also been
used for change detection. In many cases, analysis is applied not
to all years of the record at once, but rather to a series of two-date
comparisons (Almeida & Shimabukuro, 2002; Cohen etal., 2002;
Haertel et al., 2004; Lunetta et al., 2004; Roberts et al., 1998;
Salvador et al., 2000). Two approaches have been proposed to
utilize multiple years of imagery simultaneously. One method is
to use principal component analysis (PCA) across years of
imagery to isolate dominant axes of variation through the
multitemporal spectral space, and then to isolate the axes that
correspond to change (Fung & Siu, 2000; Michener & Houhoulis,
1997). The challenge is in labeling the PCA axis or axes
corresponding to the changes of interest, because the coefficients
in each analysis depends entirely on the particular images used
(Garcia-Haro et al., 2001). This challenge is similar to that
encountered in composite analysis, another approach common in
multidate change detection studies (Cohen & Fiorella, 1998).
There, either raw bands or derived indices are clustered using
either an unsupervised or supervised classification algorithm, and
classes labeled by user interpretation (Elmore et al., 2003; Hayes
& Sader, 2001; Healey et al., 2005; Wilson & Sader, 2002). While
effective, this requires significant effort and is requires high user
expertise in image interpretation.

In addition to tracking abrupt change, Landsat MSS and TM
data have been used to track long term trends in vegetation.
Lawrence and Ripple (1999) used a time series of eight Landsat
TM images to examine recovery after the Mt. St. Helen’s eruption
of 1980. Pixels were transformed into estimates of green
vegetation cover, and then grouped into a series of temporal
trajectory classes using unsupervised k-means classification.
Mean trajectories in vegetation cover for each class were
characterized using polynomial equations, and parameters that
summarized the polynomial equations used to infer recovery
characteristics of the pixels in the class. A similar approach was
used by Schroeder et al. (in review) to identify factors controlling
revegetation rates after clear-cut harvest. Several studies in
northeastern Spain have utilized multitemporal MSS imagery to
capture burn events and monitor long term recovery from burns
(Diaz-Delgado et al., 2002; Garcia-Haro et al., 2001). Another
common approach to time series analysis is to fit a linear trend to
NDVI (normalized difference vegetation index; Tucker (1979)) or
spectrally-unmixed vegetation cover data, and to thereby identify
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areas on the landscape where vegetation is increasing or
decreasing over time (Fung & Siu, 2000; Hostert et al., 2003;
Maselli, 2002). Riano et al. (2002) modeled recovery rates after
fire by fitting logarithmic curves to endmember proportions in a
sequence of AVIRIS imagery. Our method builds on those prior
studies by incorporating an explicit exponential fit for recovery
rate, but uses expected models of recovery trajectory to help build
a complete picture of both disturbance and recovery.

Before discussing the performance of the method, a brief
discussion of the validation process is needed. Independent
reference data for all years of imagery are simply not available,
but validation of each year of change detection was necessary to
evaluate the utility of the method across all years. Thus, we chose
to use the image dataset itself for validation, comparing the
automated algorithm with forest disturbance maps digitized by a
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trained interpreter across all years of the record. The method has
been used for validation in prior published studies in the same
study area (Cohen et al., 1998, 2002). While not based on an
independent image dataset, this interpretation approach was
shown in our comparisons with DOQ interpretation to be effective
at capturing Type 1 disturbances of the size used in the
aforementioned studies. This also allows development of a
validation dataset without reference to the mapped output, which
is important for correctly capturing both omission and commis-
sion errors of a statistically rare phenomenon such as change
(Morisette & Khorram, 2000). For our direct interpretation of the
imagery, we characterized all disturbances over an area larger than
most disturbance events (3 by 3 km), and were thus able to capture
both change and no-change events. Although this forces us to use
a relatively small sample of the landscape for our validation
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Fig. 7. A detailed illustration of the detection of partial cuts by the algorithm for an area in the Cascade mountains in western Oregon. a) Tasseled-cap imagery from the
year 1995, with tasseled-cap brightness in red, greenness in green, and wetness in blue. b) As for a), but for the year 2000. Overlain on the imagery are polygons
digitized by an interpreter for accuracy assessment, with red lines denoting Type 1 disturbance and orange lines Type 2 disturbance. ¢) Digital orthoquad (DOQ)
imagery from 1995 for the same area as in a) and b), with the same digitized polygons overlain for reference. d) As in c), but for the year 2000. e) Map of disturbance
intensity produced by the trajectory-based curve-fitting algorithm, filtered to a minimum mapping unit of 9 pixels (0.81 ha). Interpreted disturbance polygons overlain
for reference. Reflectance intensity is in BSR units, which range from 0 to 1.0. f) The same disturbance intensity map, but overlain on the 2000 DOQ to show that
spatial patterns of intensity in the algorithm-derived map mimic patterns of tree-loss visible in the DOQs.
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(2.4%), Stehman (2005) show that a robust, small sample can
provide a more accurate estimate of change than a less robust,
larger sample. From our in-depth characterization, we drew a
balanced set of change and no-change plots for accuracy
assessment, making the false positive and false negative rates
more likely to reflect actual accuracy of the algorithm. Despite the
effort placed on exhaustive characterization of change, any direct
interpretation of 9-km? areas is not error free. Indeed, some of the
55 interpreted patches not captured by the algorithm appeared to
have been false positive interpretations, based on post-hoc
assessment by a second interpreter (see Results section).
Nevertheless, the direct human interpretation of imagery takes
into account patch size, shape, and overall land use patterns that
are difficult to incorporate into automated routines.

The comparison between the satellite-interpreted change
dataset and the DOQ-interpreted change dataset confirms the
general utility of the satellite interpretation approach, and also
points out its shortcomings. When disturbances were in forested
regions, were stand-replacing, and were greater than 2 ha in size,
error rates were good. Considering that no other reference dataset
exists for evaluation of year-to-year change detection, these
results are encouraging. As the size of the disturbance decreases,
and as the spectral signal becomes more subtle, the robustness of
the direct satellite interpretation gradually diminishes. It is critical
to note, however, that the trajectory-based change detection
method actually had higher agreement with the DOQ-based
interpretation than did the satellite-interpreted change detection.
Thus, the year-to-year agreement between the trajectory-based
change detection maps and the satellite-interpreted validation
maps summarized in Tables 5—8 are likely more pessimistic than
the actual agreement rates.

Based on this interpretation dataset, accuracy rates of our
trajectory-based change detection were as high or higher than
those reported by other studies in the same region (Cohen et al.,
1998; Healey et al., 2005). Moreover, the method is automated,
which contrasts with classification methods that require
significant expert interpretation to label different change
trajectories in multiple dates of imagery (Adams et al., 1995).
Additionally, the method is likely generalizeable because it does
not require any preliminary thresholding of forest areas, and
does not require development of metric-specific thresholds.
Because development of change detection thresholds requires
significant expertise or theoretical development (Chen et al.,
2003; Roy et al., 2002), the method’s freedom from such
thresholding requirements is notable. This is true even in areas
of agriculture that have large year-to-year spectral variability.

The method appears successful at detecting stand-thinning
and partial cuts in forests. When the location of thinned stands is
known, thinning intensity has been shown to be related to
changes in Landsat spectral data (Healey et al., 2006). In this
study, however, prior location of thinned stands was not known
and the method still captured many such disturbances. Across all
patches in the satellite-interpreted dataset labeled as clear-cuts,
the mean intensity of disturbance reported by the algorithm was
0.168 (in B5R units), while the intensity for patches interpreted
as partial cuts was 0.134, suggesting that disturbances of
different type were indeed separated. Comparison with the

DOQ-interpreted dataset confirmed that partial cuts were indeed
detected with the trajectory-based approach. Fig. 7 provides one
example. Shown are DOQ images for the time periods available
(1995 and 2000), tasseled-cap imagery from the same years,
polygons digitized from direct satellite image interpretation, and
a map of the algorithm-derived estimate of disturbance intensity
based on the BSR. The disturbance intensity map shows that not
only are clear-cuts and thinnings separated, but also that the
spatial variability of disturbance intensity within a given cut
corresponds to actual variability in the density of trees removed.
The ability of the method to detect partial stand harvest
illustrates the power of the approach: by considering long term
trends over multiple dates, the signal-to-noise ratio of change is
increased, and subtle variation that might otherwise be
inseparable from background noise is more likely to be detected.

The outputs from the method include not only year of
disturbance and intensity of disturbance, but also of rate of
recovery. Due to the difficulty in developing truly independent
reference data to validate these metrics, no quantitative accuracy
measures are reported here. However, the spatial distribution of
recovery rates within and across patches also appears
reasonable. Efforts are being made to identify independent
data sources for validation of these values.

Several possible modifications and improvements to the
method are possible. Although the method tested in this study
used B5R, any single-layer index or band could be used, so long
as the disturbance trajectories were updated to accurately reflect
that index’s disturbance trajectories. Tasseled-cap wetness and
the normalized difference vegetation index (NDVI) are primary
candidates because of their prior use in vegetation change
detection efforts (Riano et al., 2002; Skakun et al., 2003). Other
potential indices include derived metrics such as the disturbance
index (Healey et al., 2005) or an estimate of percent cover built
from regression-based models (Cohen et al., 2003). An index
such as the NDVI could conceivably be used to extend the
analysis to the Landsat MSS era (beginning in 1972), although
care would be needed to normalize the MSS spectral data to the
TM data during the period of overlap. Another direction for
future investigation would be to more explicitly incorporate the
spatial dimension of the imagery, using, for example, patch-
average metrics rather than pixel-based metrics. The signal-to-
noise ratio for coherent events would likely increase, allowing
more accurate detection of subtle effects of partial cuts or
thinnings. Application to land cover types beyond forest could
also be possible with the trajectory-based approach. This may
be particularly relevant in land cover types (such as agriculture)
where two-date spectral change detection is hampered by large
interyear variability in spectral condition. Conversion from
agriculture to urban or developed land may lead to reduction in
year-to-year variation in green cover, and presumably the level
of residual variability about the fitted trend line could itself be
used as information to identify such changes.

The method has a variety of potential uses. By capturing
disturbance on a yearly basis, disturbance events can be more
explicitly linked with year-to-year changes in economic, social,
environmental, and management factors. Also, because the
method estimates disturbance intensity, it is reasonable to
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expect that linkage with carbon loss rates may be feasible.
Moreover, by detecting partial disturbance as well as complete
forest clearance, a better understanding of evolving landscape-
level land management techniques may be possible. Because
the method does not need pre-screening of forest/non-forest
areas, it has the potential to track disturbance in small woodlots
in agricultural areas that would otherwise be missed in many
forest change detection approaches. Finally, because the method
captures both disturbance and recovery, the method will be
relevant for studies of net carbon stock losses and gains.

5. Summary

We have presented a method for detection and labeling of forest
disturbance in a dense time series of Landsat TM and ETM+
imagery. By capitalizing on the fact that landscape dynamics have
characteristic temporal profiles both before and after an actual
change event, the method represents a new conceptual approach to
change detection. The approach requires no pre-screening of
forest/non-forest areas, requires no data-specific change thresh-
olding, and provides estimates of disturbance year, intensity, and
rate of recovery for every pixel and year in a 20-year record of
imagery. Compared with polygons digitized by direct interpreta-
tion of tasseled-cap imagery for every year in the record, the
automated method agreed with the labeled year of disturbance for
clear-cuts with an overall accuracy of 91% (kappa=0.87), and for
partial cuts with an overall accuracy of 74% (kappa=0.60). An
independent evaluation of the direct satellite interpretation
suggested that these rates of agreement are perhaps even lower
than the actual rates of agreement detectable with higher-resolution
imagery. The primary source of error was in misregistration of
images in the stack of Landsat data, suggesting that better
geometric registration will improve overall accuracy rates.
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